中国农业科学 ›› 2022, Vol. 55 ›› Issue (17): 3303-3320.doi: 10.3864/j.issn.0578-1752.2022.17.004
收稿日期:
2021-11-15
接受日期:
2022-01-05
出版日期:
2022-09-01
发布日期:
2022-09-07
通讯作者:
胡笑涛
作者简介:
汝晨,E-mail: 基金资助:
RU Chen(),HU XiaoTao(),LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan
Received:
2021-11-15
Accepted:
2022-01-05
Online:
2022-09-01
Published:
2022-09-07
Contact:
XiaoTao HU
摘要:
【目的】 本研究基于气候室模拟温度日变化特征,旨在探讨氮素对高温、干旱及复合胁迫下冬小麦地上干物质重、氮积累与分配、氮代谢相关酶活性、蛋白质含量、产量及水氮利用效率的影响。【方法】 基于人工气候室开展冬小麦盆栽试验,以小偃22号为试验材料,采用裂-裂区随机完全区组设计,以2个温度处理(高温:H;适宜温度:S)为主区,以2个水分水平(干旱:D;充分供水:F)为裂区,3个施氮水平(低氮:N1;中氮:N2;高氮:N3)为裂-裂区,研究冬小麦生长生理特性、产量及水氮利用效率对高温干旱胁迫及各施氮量的响应特征。【结果】 高温、干旱及复合胁迫导致地上总干物质重(ADW)和氮积累量(ANA)降低。在成熟期,高温干旱复合胁迫(HD)和干旱胁迫(SD)下N3处理ANA分别较N1处理增加7.26%和6.82%。高温、干旱及复合胁迫提高小麦花前氮素对籽粒贡献率(NRR),HD胁迫各施氮处理NRR均值较对照(SF)增加达38.21%,施氮量的增加扩大这种增加效应。高温、干旱及复合胁迫导致成熟期穗氮分配率降低,特别是复合胁迫。暴露于高温、干旱及复合胁迫下籽粒蛋白质产量(PY)降低,干旱胁迫(7.37%)各施氮处理PY均值较高温胁迫(3.94%)降低更多,无论单一或复合胁迫下籽粒PY均在N2处理下显著增加。此外,单一的干旱和高温胁迫下降低的谷氨酰胺合成酶(GS)和硝酸还原酶(NR)活性在N2处理下显著增加,复合胁迫N1处理NR和GS活性分别较N3处理提高23.81%和23.07%。与对照相比,干旱胁迫各施氮处理穗粒数、千粒重和产量均值的降幅均高于高温胁迫,N2处理对高温和干旱胁迫下这些参数存在明显正向调控,产量水分利用效率(WUEg)和生物量水分利用效率(WUEb)在N2处理下得到明显改善。充分供水+N2处理籽粒(NUEg)分别较低干旱和复合胁迫N3处理提高19.09%和19.44%,表明在水分充足条件下中氮能有效地缓解干旱和高温胁迫下籽粒氮利用效率的降低。NUEg和NUEb的提高可能归因于合理氮肥调控下增加的GS和NR活性。主成分分析表明胁迫条件下小麦千粒重和ADW与产量的关系更紧密。【结论】 高温和干旱胁迫的综合效应比单一胁迫对小麦危害更大。在单一高温和干旱胁迫下,适量增加氮输入能增加氮代谢酶活性并维持更高氮代谢能力,提高籽粒氮积累量及蛋白质产量,将更有利于提高产量及水氮利用效率。然而在花后遭遇高温干旱复合胁迫时,相比低施氮量,增加施氮对小麦产量形成及水氮的吸收利用均产生一定抑制作用,应适当减少氮肥用量。
汝晨,胡笑涛,吕梦薇,陈滇豫,王文娥,宋天媛. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响[J]. 中国农业科学, 2022, 55(17): 3303-3320.
RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis[J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
图3
高温干旱胁迫下氮素对小麦地上各器官干物重的影响 (a)和(b)代表花后10 d,(c)和(d)代表花后17 d,(e)和(f)代表成熟期;(a)、(c)和(e)代表在适温条件下,(b)、(d)和(f)代表在高温条件下;数据为至少3次重复的平均值与标准差,不同小写字母表示在0.05水平上差异显著;S表示适温,H表示高温,D表示干旱,F表示充分浇水,N表示氮素。图中右侧分别为温度(T)、水分(W)和氮素(N)对花后10、17 d和成熟期地上部总干物重的方差分析结果;* 表示显著性水平为P0.05,** 表示显著性水平为P0.01,***表示显著性水平为P0.001;NS表示未达显著水平。下同"
表1
高温、干旱及复合胁迫下氮素对地上部氮积累量及转运的影响"
处理 Treatment | 地上部氮积累量ANA (mg/plant) | 成熟期籽粒 氮积累 GNA (mg/plant) | 花前贮藏氮素转运量 NRA (mg/plant) | 花前氮对籽粒贡献率 NRR (%) | 花后氮对籽粒贡献率 NCP (%) | ||||
---|---|---|---|---|---|---|---|---|---|
花期 Anthesis | 花后10 d 10 DAA | 花后17 d 17 DAA | 成熟期 Mature | ||||||
高温 H | DN1 | — | 32.89±1.81f | 37.20±1.18e | 39.00±2.10f | 27.66±0.45f | 17.93±1.01d | 64.82±2.67d | 35.18±1.23c |
DN2 | — | 35.03±2.04c | 37.24±0.89de | 41.70±2.09e | 29.30±1.03d | 20.18±0.78c | 68.87±1.65b | 31.13±1.55e | |
DN3 | — | 34.01±1.79e | 36.70±1.60f | 41.83±1.32de | 28.54±0.69e | 21.98±0.90a | 77.01±2.80a | 22.99±0.62f | |
FN1 | — | 34.76±1.32d | 37.70±0.59c | 44.26±2.78c | 32.38±0.60c | 17.39±0.39e | 53.71±1.20f | 46.29±1.84a | |
FN2 | — | 40.14±0.78a | 42.27±1.73a | 47.61±0.90a | 35.32±1.43b | 20.29±1.21bc | 57.45±3.74e | 42.55±2.47b | |
FN3 | — | 38.63±1.30b | 40.40±2.35b | 46.63±1.21b | 33.82±0.99a | 22.46±0.99a | 66.41±1.89c | 33.59±1.89d | |
适温 S | DN1 | — | 35.42±1.38f | 38.96±1.20f | 44.29±0.67f | 33.10±1.67e | 18.08±0.34d | 54.62±0.84d | 45.38±0.66cd |
DN2 | — | 39.94±0.77d | 43.37±0.44d | 45.28±1.17e | 34.12±2.21d | 21.25±0.87b | 62.59±1.19b | 37.41±1.54e | |
DN3 | — | 39.10±2.20e | 42.49±1.14e | 47.31±3.01d | 34.66±1.11cd | 22.62±1.01a | 65.26±2.57a | 34.74±2.63f | |
FN1 | 29.27±1.12c | 41.08±3.05c | 43.06±2.33c | 48.88±1.48c | 37.16±0.80b | 17.55±0.78e | 47.23±1.22f | 52.77±1.33a | |
FN2 | 32.58±0.56b | 45.00±1.22a | 48.64±1.62a | 52.95±2.21b | 40.83±2.32a | 20.26±0.56c | 49.86±1.76e | 50.14±3.54b | |
FN3 | 35.27±1.06a | 44.09±2.29b | 46.09±1.07b | 53.23±1.70a | 40.23±1.53a | 22.27±1.21a | 55.36±1.85cd | 44.64±1.77d | |
变异来源 Source of variation | T | — | *** | *** | *** | *** | ** | *** | *** |
W | — | *** | ** | *** | *** | * | *** | *** | |
N | *** | ** | ** | ** | *** | *** | *** | *** | |
T×W | — | * | * | NS | NS | * | ** | NS | |
T×N | — | NS | * | ** | NS | NS | * | ** | |
W×N | — | * | NS | * | * | * | NS | ** | |
T×W×N | — | * | NS | * | NS | * | ** | ** |
表2
高温、干旱及复合胁迫下氮素对小麦籽粒蛋白质组分含量的影响"
处理 Treatment | 蛋白质组分含量 Protein component content | 谷/醇比 Glu/Gli | 总蛋白质含量 Total protein content (%) | 蛋白质产量 Protein yield (mg/grain) | ||||
---|---|---|---|---|---|---|---|---|
清蛋白 Albumin (%) | 球蛋白 Globulin (%) | 醇溶蛋白 Gliadin (%) | 谷蛋白 Glutenin (%) | |||||
高温 H | DN1 | 1.74±0.02a | 1.52±0.02b | 3.16±0.12d | 4.11±0.17e | 1.30±0.02ab | 12.41±0.56f | 4.27±0.10f |
DN2 | 1.75±0.05a | 1.60±0.05ab | 3.22±0.07cd | 4.40±0.21cd | 1.37±0.05ab | 13.01±0.29a | 4.71±0.23d | |
DN3 | 1.71±0.03b | 1.73±0.04a | 3.31±0.08bcd | 4.27±0.77de | 1.29±0.01b | 12.87±0.19c | 4.50±0.15e | |
FN1 | 1.58±0.06d | 1.20±0.09e | 3.42±0.12ab | 4.70±0.19b | 1.37±0.07ab | 12.56±0.44e | 4.84±0.25c | |
FN2 | 1.60±0.02c | 1.22±0.01de | 3.52±0.09a | 4.94±0.09a | 1.40±0.05a | 12.89±0.72bc | 5.09±0.31a | |
FN3 | 1.71±0.05b | 1.31±0.01cde | 3.46±0.10ab | 4.78±0.23ab | 1.38±0.08ab | 12.65±0.30de | 4.93±0.18bc | |
适温 S | DN1 | 1.53±0.07c | 1.19±0.04de | 3.52±0.08a | 4.87±0.30e | 1.38±0.01e | 12.21±0.14bc | 4.68±0.24de |
DN2 | 1.62±0.03a | 1.22±0.07c | 3.48±0.18a | 5.09±0.19cd | 1.46±0.04d | 12.45±0.88a | 4.99±0.30bc | |
DN3 | 1.57±0.01b | 1.18±0.03e | 3.60±0.13a | 4.95±0.09de | 1.38±0.05e | 12.55±0.26a | 4.66±0.15e | |
FN1 | 1.44±0.03f | 1.22±0.02c | 3.01±0.21d | 5.42±0.25b | 1.80±0.06bc | 11.60±0.50e | 4.91±0.29c | |
FN2 | 1.51±0.06d | 1.26±0.08a | 3.10±0.04dcd | 5.74±0.16a | 1.85±0.04a | 11.88±0.63d | 5.25±0.41a | |
FN3 | 1.47±0.03e | 1.24±0.03b | 3.20±0.17bc | 5.64±0.37a | 1.79±0.02bc | 12.10±0.66c | 5.31±0.27a | |
变来源异 Source of variation | T | * | ** | ** | ** | *** | ** | *** |
W | * | ** | ** | ** | ** | *** | ** | |
N | NS | * | * | *** | ** | NS | * | |
T×W | NS | ** | ** | ** | * | *** | *** | |
T×N | NS | ** | NS | NS | ** | ** | ** | |
W×N | NS | NS | NS | NS | * | NS | NS | |
T×W×N | ** | NS | NS | NS | * | NS | NS |
表3
温度、水分和氮素对产量形成参数及水氮利用效率的方差分析"
变异来源 Source of variation | 穗数 Spike number | 穗粒数 Grain number per spike | 千粒重 1000 grain weight | 产量 Yield | 收获指数 Harvest index | 水分利用 效率 WUEg | 干物重水分利用效率WUEb | 籽粒氮 利用效率 NUEg | 干物重氮 利用效率 NUEb | 氮肥偏 生产力 PFPN | 氮收获 指数 NHI |
---|---|---|---|---|---|---|---|---|---|---|---|
T | NS | * | ** | *** | *** | NS | NS | ** | ** | *** | * |
W | NS | * | ** | *** | ** | * | ** | ** | * | *** | *** |
N | *** | ** | * | ** | * | NS | * | * | ** | *** | ** |
T×W | NS | NS | * | ** | ** | ** | ** | * | * | ** | NS |
T×N | ** | ** | * | NS | ** | ** | * | * | ** | ** | * |
W×N | * | ** | NS | NS | NS | ** | * | * | NS | *** | ** |
T×W×N | NS | * | NS | NS | ** | NS | NS | NS | NS | ** | NS |
[1] | 王晨阳, 张艳菲, 卢红芳, 赵君霞, 马耕, 马冬云, 朱云集, 郭天财, 马英, 姜玉梅. 花后渍水,高温及其复合胁迫对小麦籽粒淀粉组成与糊化特性的影响. 中国农业科学, 2015, 48(4): 813-820. |
WANG C Y, ZHANG Y F, LU H F, ZHAO J X, MA G, MA D Y, ZHU Y J, GUO T C, MA Y, JIANG Y M. Effects of post-anthesis waterlogging, high temperature and their combination on starch compositions and pasting properties in wheat grains. Scientia Agricultura Sinica, 2015, 48(4): 813-820. (in Chinese) | |
[2] | 卢红芳, 石向军, 胡阳阳, 王晨阳, 王家瑞, 刘卫星, 马耕, 康娟. 灌浆期高温与干旱对小麦籽粒淀粉合成相关酶基因表达的影响. 麦类作物学报, 2020, 40(5): 517-525. |
LU H F, SHI X J, HU Y Y, WANG C Y, WANG J R, LIU W X, MA G, KANG J. Response of enzymes involved in starch biosynthesis to high temperature and drought stress during the grain filling stage. Journal of Triticeae Crops, 2020, 40(5): 517-525. (in Chinese) | |
[3] |
NIWAS R, KHICHAR M L. Managing impact of climatic vagaries on the productivity of wheat and mustard in India. Mausam, 2016, 67(1): 205-222.
doi: 10.54302/mausam.v67i1.1179 |
[4] | 解锋. 灾害性气候对关中平原小麦生产的影响及抗灾策略. 陕西农业科学, 2016, 62(1): 84-86. |
XIE F. Effects of disastrous climate on wheat production in Guanzhong Plain and disaster resistance strategies. Shaanxi Journal of Agricultural Sciences, 2016, 62(1): 84-86. (in Chinese) | |
[5] | 王贺正, 张均, 吴金芝, 徐国伟, 陈明灿, 付国占, 李友军. 不同氮素水平对小麦旗叶生理特性和产量的影响. 草业学报, 2013, 22(4): 69-75. |
WANG H Z, ZHANG J, WU J Z, XU G W, CHEN M C, FU G Z, LI Y J. Effect of different levels of nitrogen on physiological characteristics of flag leaves and grain yield of wheat. Acta Prataculturae Sinica, 2013, 22(4): 69-75. (in Chinese) | |
[6] |
MCALLISTER C H, BEATTY P H, GOOD A G. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnology Journal, 2012, 10(9): 1011-1025.
doi: 10.1111/j.1467-7652.2012.00700.x |
[7] | 赵辉. 花后高温和水分逆境对小麦籽粒品质形成的生理影响[D]. 南京: 南京农业大学, 2006. |
ZHAO H. Physiological effects of post-anthesis high temperature and water stress on wheat quality formation[D]. Nanjing: Nanjing Agricultural University, 2006. (in Chinese) | |
[8] |
AN Y, WAN S Q, ZHOU X H, SUBEDAR A A, WALLACE L L, LUO Y Q. Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Global Change Biology, 2005, 11(10): 1733-1744.
doi: 10.1111/j.1365-2486.2005.01030.x |
[9] |
YANG H, GU X T, DING M Q, LU W P, LU D L. Weakened carbon and nitrogen metabolisms under post-silking heat stress reduce the yield and dry matter accumulation in waxy maize. Journal of Integrative Agriculture, 2020, 19(1): 78-88.
doi: 10.1016/S2095-3119(19)62622-5 |
[10] | 胡吉帮. 小麦灌浆期高温、干旱及其互作对籽粒蛋白质形成、品质性状及产量的影响[D]. 郑州: 河南农业大学, 2009. |
HU J B. Effects of high temperature and drought and their interactions during grain filling on protein formation and protein traits in grains and yield of winter wheat[D]. Zhengzhou: Henan Agricultural University, 2009. (in Chinese) | |
[11] | 卢红芳, 王晨阳, 郭天财, 尹云星. 灌浆前期高温和干旱胁迫对小麦籽粒蛋白质含量和氮代谢关键酶活性的影响. 生态学报, 2014, 34(13): 3612-3619. |
LU H F, WANG C Y, GUO T C, YIN Y X. Effects of high- temperature and drought stress on protein concentration and key enzyme activities in relation to nitrogen metabolism in wheat grains during the early stage of grain filling. Acta Ecologica Sinica, 2014, 34(13): 3612-3619. (in Chinese) | |
[12] |
DANIEL C, TRIBOI E. Changes in wheat protein aggregation during grain development: effects of temperatures and water stress. European Journal of Agronomy, 2002, 16(1): 1-12.
doi: 10.1016/S1161-0301(01)00114-9 |
[13] |
RANDALL P J, MOSS H J. Some effects of temperature regime during grain filling on wheat quality. Australian Journal of Agricultural Research, 1990, 41(4): 603-617.
doi: 10.1071/AR9900603 |
[14] | 李萍, 尚云秋, 林祥, 刘帅康, 王森, 胡鑫慧, 王东. 拔节期阶段性干旱对小麦茎蘖成穗与结实的影响. 中国农业科学, 2020, 53(20): 4137-4151. |
LI P, SHANG Y Q, LIN X, LIU S K, WANG S, HU X H, WANG D. Effects of drought stress during jointing stage on spike formation and seed setting of main stem and tillers of winter wheat. Scientia Agricultura Sinica, 2020, 53(20): 4137-4151. (in Chinese) | |
[15] | 杨东清, 王振林, 倪英丽, 尹燕枰, 蔡铁, 杨卫兵, 彭佃亮, 崔正勇, 江文文. 高温和外源ABA对不同持绿型小麦品种籽粒发育及内源激素含量的影响. 中国农业科学, 2014, 47(11): 2109-2125. |
YANG D Q, WANG Z L, NI Y L, YIN Y P, CAI T, YANG W B, PENG D L, CUI Z Y, JIANG W W. Effect of high temperature stress and spraying exogenous ABA post-anthesis on grain filling and grain yield in different types of stay-green wheat. Scientia Agricultura Sinica, 2014, 47(11): 2109-2125. (in Chinese) | |
[16] |
RATTALINO EDREIRA J I, OTEGUI M E. Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use. Field Crops Research, 2012, 130: 87-98.
doi: 10.1016/j.fcr.2012.02.009 |
[17] |
ZHANG Z B, XU P, SHAO H B, LIU M J, FU Z Y, CHU L Y. Advances and prospects: Biotechnologically improving crop water use efficiency. Critical Reviews in Biotechnology, 2009, 31(3): 281-293.
doi: 10.3109/07388551.2010.531004 |
[18] |
HUANG Y L, CHEN L D, FU B J, HUANG Z L, GONG E. The wheat yields and water-use efficiency in the Loess Plateau: Straw mulch and irrigation effects. Agricultural Water Management, 2005, 72(3): 209-222.
doi: 10.1016/j.agwat.2004.09.012 |
[19] | 吴金枝, 黄明, 王志敏, 李友军, 张振旺, 王贺正, 付国占, 陈明灿. 干旱对冬小麦旗叶光合参数、产量和水分利用效率的影响. 江苏农业科学, 2021, 37(5): 1108-1118. |
WU J Z, HUANG M, WANG Z M, LI Y J, ZHANG Z W, WANG H Z, FU G Z, CHEN M C. Effect of drought on flag leaf photosynthetic paramaters, grain yield and water use efficiency in winter wheat. Jiangsu Agricultural Sciences, 2021, 37(5): 1108-1118. (in Chinese) | |
[20] |
FAROOQ M, BRAMLEY H, PALTA J A, SIDDIQUE K H M. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 2011, 30(6): 491-507.
doi: 10.1080/07352689.2011.615687 |
[21] | 崔亚坤, 王妮妮, 田中伟, 戴廷波, 陈艳萍, 袁建华. 分蘖和拔节期干旱对小麦植株氮素积累转运的影响. 麦类作物学报, 2019, 39(3): 74-80. |
CUI Y K, WANG N N, TIAN Z W, DAI T B, CHEN Y P, YUAN J H. Effect of water deficit during tillering and jointing stages on nitrogen accumulation and translocation in winter wheat. Journal of Triticeae Crops, 2019, 39(3): 74-80. (in Chinese) | |
[22] |
SUZUKI N, RIVERO R M, SHULAEV V, BLUMWALD E, MITTLER R. Abiotic and biotic stress combinations. New Phytologist, 2014, 203(1): 32-43
doi: 10.1111/nph.12797 |
[23] | 上海植物生理学会, 上海植物生理研究所. 现代植物生理学实验指南. 北京: 科学出版社, 1999: 131-134. |
Shanghai Society of Plant Physiology, Shanghai Institute of Plant Physiology. Experimental Guide of Modern Plant Physiology. Beijing: Science Press, 1999: 131-134. (in Chinese) | |
[24] |
WIESER H, ANTES S, SEILMEIER W. Quantitative determination of gluten protein types in wheat flour by reversed-phase high- performance liquid chromatography. Cereal Chemistry, 1998, 75(5): 644-650.
doi: 10.1094/CCHEM.1998.75.5.644 |
[25] | 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. |
LI H S. Plant Physiological and Biochemical Experimental Principles and Techniques. Beijing: Higher Education Press, 2000. (in Chinese) | |
[26] | 王小纯, 熊淑萍, 马新明, 张娟娟, 王志强. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响. 生态学报, 2005, 25(4): 802-807. |
WANG X C, XIONG S P, MA X M, ZHANG J J, WANG Z Q. Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars. Acta Ecologica Sinica, 2005, 25(4): 802-807. (in Chinese) | |
[27] | 仝锦, 孙敏, 任爱霞, 林文, 余少波, 王强, 冯玉, 任婕, 高志强. 高产小麦品种植株干物质积累运转, 土壤耗水与产量的关系. 中国农业科学, 2020, 53(17): 3467-3478. |
TONG J, SUN M, REN A X, LIN W, YU S B, WANG Q, FENG Y, REN J, GAO Z Q. Relationship between plant dry matter accumulation, translocation, soil water consumption and yield of high-yielding wheat cultivars. Scientia Agricultura Sinica, 2020, 53(17): 3467-3478. (in Chinese) | |
[28] | 胡红玲, 张健, 胡庭兴, 涂利华, 泮永祥, 曾凡明, 陈洪, 吴秀华. 不同施氮水平对巨桉幼树耐旱生理特征的影响. 西北植物学报, 2014, 34(1): 118-127. |
HU H L, ZHANG J, HU T X, TU L H, PAN Y X, ZENG F M, CHEN H, WU X H. Drought tolerance comparision of Eucalyptus grandis saplings under different nitrogen application levels. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(1): 118-127. (in Chinese) | |
[29] | 梁玉超, 张永强, 石书兵, 陈兴武, 赛力汗·赛, 薛丽华, 雷钧杰. 施氮量对滴灌冬小麦茎部特征及其抗倒伏性的影响. 麦类作物学报, 2017, 37(11): 1467-1472. |
LIANG Y C, ZHANG Y Q, SHI S B, CHEN X W, SAILH S, XUE L H, LEI J J. Effect of nitrogen fertilizer rate on stem morphology characteristics and lodging resistance in winter wheat with drip irrigation. Journal of Triticeae Crops, 2017, 37(11): 1467-1472. (in Chinese) | |
[30] |
ORDONEZ R A, SAVIN R, COSSANI C M, SLAFER G A. Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Research, 2015, 183: 184-203.
doi: 10.1016/j.fcr.2015.07.010 |
[31] |
ELIA M, SLAFER G A, SAVIN R. Yield and grain weight responses to post-anthesis increases in maximum temperature under field grown wheat as modified by nitrogen supply. Field Crops Research, 2018, 221: 228-237.
doi: 10.1016/j.fcr.2018.02.030 |
[32] |
ALTENBACH S B, DUPONT F M, KOTHARI K M, CHAN R, JOHNSON E L, LIEU D. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science, 2003, 37(1): 9-20.
doi: 10.1006/jcrs.2002.0483 |
[33] | 刘萍, 郭文善, 浦汉春, 封超年, 朱新开, 彭永欣. 灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响. 中国农业科学, 2005, 38(12): 2403-2407. |
LIU P, GUO W S, PU H C, FENG C N, ZHU X K, PENG Y X. Effects of high temperature during grain filling period on antioxidant enzymes and lipid peroxidation in flag leaves of wheat. Scientia Agricultura Sinica, 2005, 38(12): 2403-2407. (in Chinese) | |
[34] | 张黎萍, 荆奇, 戴廷波, 姜东, 曹卫星. 温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响. 应用生态学报, 2008, 19(2): 311-316. |
ZHANG L P, JING Q, DAI T B, JIANG D, CAO W X. Effects of temperature and illumination on flag leaf photosynthetic characteristics and senescence of wheat cultivars with different grain quallity. Chinese Journal of Applied Ecology, 2008, 19(2): 311-316. (in Chinese) | |
[35] |
OSMAN R, ZHU Y, CAO W X, DING Z F, WANG M, LIU L L, TANG L, LIU B. Modeling the effects of extreme high-temperature stress at anthesis and grain filling on grain protein in winter wheat. The Crop Journal, 2020, 9(4): 889-900.
doi: 10.1016/j.cj.2020.10.001 |
[36] | WESTGATE M E, PASSIOURA J B, MUNNS R. Water status and ABA content of floral organs in drought-stressed wheat. Australian Journal of Plant Physiology, 1996, 23(6): 763-772. |
[37] | 赵晶晶. 花后高温胁迫下不同施氮量对春小麦产量形成的影响机理[D]. 银川: 宁夏大学, 2015. |
ZHAO J J. Effects of different nitrogen application on the spring wheat yield formation under high temperature after anthesis[D]. Yinchuan: Ningxia University, 2015. (in Chinese) | |
[38] | 崔佩佩, 丁玉川, 焦晓燕, 武爱莲, 王劲松, 董二伟, 郭珺, 王立革. 氮肥对作物的影响研究进展. 山西农业科学, 2017, 45(4): 663-668. |
CUI P P, DING Y C, JIAO X Y, WU A L, WANG J S, DONG E W, GUO J, WANG L G. Research advances on effects of nitrogen fertilizer application on crops. Journal of Shanxi Agricultural Sciences, 2017, 45(4): 663-668. (in Chinese) | |
[39] |
DU Y D, NIU W Q, ZHANG Q, CUI B J. ZHANG Z H, WANG Z, SUN J. A synthetic analysis of the effect of water and nitrogen inputs on wheat yield and water- and nitrogen-use efficiencies in China. Field Crops Research, 2021, 265(2): 108105.
doi: 10.1016/j.fcr.2021.108105 |
[40] |
HE M Z, DIJKSTRA F A. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytologist, 2014, 204(4): 924-931.
doi: 10.1111/nph.12952 |
[41] |
XIAO G J, ZHANG Q, ZHANG F J, MA F, WANG J, HUANG J Y, LUO C K, HE X P, QIU Z J. Warming influences the yield and water use efficiency of winter wheat in the semiarid regions of Northwest China. Field Crops Research, 2016, 199: 129-135.
doi: 10.1016/j.fcr.2016.09.023 |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[7] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[8] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[9] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[10] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[11] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[12] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[13] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[14] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[15] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
|