[1] |
潘晶, 黄翠华, 彭飞, 尤全刚, 刘斐耀, 薛娴. 植物根际促生菌诱导植物耐盐促生作用机制. 生物技术通报, 2020, 36(9): 75-87.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0511
|
|
PAN J, HUANG C H, PENG F, YOU Q G, LIU F Y, XUE X. Mechanisms of salt tolerance and growth promotion in plant induced by plant growth-promoting rhizobacteria. Biotechnology Bulletin, 2020, 36(9): 75-87. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0511
|
[2] |
李建国, 濮励杰, 朱明, 张润森. 土壤盐渍化研究现状及未来研究热点. 地理学报, 2012, 67(9): 1233-1245.
|
|
LI J G, PU L J, ZHU M, ZHANG R S. The present situation and hot issues in the salt-affected soil research. Acta Geographica Sinica, 2012, 67(9): 1233-1245. (in Chinese)
|
[3] |
ASSAHA D V M, UEDA A, SANEOKA H, AL-YAHYAI R, YAISH M W. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in physiology, 2017, 8: 509-527.
doi: 10.3389/fphys.2017.00509
|
[4] |
ZHU J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324.
doi: 10.1016/j.cell.2016.08.029
|
[5] |
SHI X L, ZHOU D Y, GUO P, ZHANG H, DONG J L, REN J Y, JIANG C J, ZHONG C, ZHAO X H, YU H Q. External potassium mediates the response and tolerance to salt stress in peanut at the flowering and needling stages. Photosynthetica, 2020, 58(5): 1141-1149.
doi: 10.32615/ps.2020.070
|
[6] |
董轲, 许亚萍, 崔冰, 王梦雨, 秦荣凤, 唐亦俐, 范海. 盐胁迫下不同钾素水平对海滨锦葵生长和光合作用的影响. 植物生理学报, 2015, 51(10): 1649-1657.
|
|
DONG K, XU Y P, CUI B, WANG M Y, QIN R F, TANG Y L, FAN H. Effects of different potassium levels on the growth and photosynthesis of kostelezkya virginica under salt stress. Plant Physiology Journal, 2015, 51(10): 1649-1657. (in Chinese)
|
[7] |
王旭明, 赵夏夏, 黄露莎, 陈景阳, 莫俊杰, 叶昌辉, 周鸿凯, 谢平. 盐胁迫下4个不同耐盐基因型水稻Na+、K+积累效应. 热带作物学报, 2018, 39(11): 2140-2146.
|
|
WANG X M, ZHAO X X, HUANG L S, CHEN J Y, MO J J, YE C H, ZHOU H K, XIE P. The Na+ and K+ accumulative effect of four different salt tolerance genotypes in rice under salt stress. Chinese Journal of Tropical Crops, 2018, 39(11): 2140-2146. (in Chinese)
|
[8] |
王学征, 李秋红, 吴凤芝. NaCl胁迫下栽培型番茄Na+、K+吸收、分配和转运特性. 中国农业科学, 2010, 43(7): 1423-1432.
|
|
WANG X Z, LI Q H, WU F Z. Study on the characteristics of absorption, distribution and selective transport of Na+ and K+ in tomato plants under salt stress. Scientia Agricultura Sinica, 2010, 43(7): 1423-1432. (in Chinese)
|
[9] |
BETENCOURT E, DUPUTEL M, COLOMB B, DESCLAUX D, HINSINGER P. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biology and Biochemistry, 2012, 46: 181-190.
doi: 10.1016/j.soilbio.2011.11.015
|
[10] |
CHANG X L, YAN L, NAEEM M, KHASKHELI M I, ZHANG H, GONG G S, ZHANG M, SONG C, YANG W Y, LIU T G, CHEN W Q. Maize/soybean relay strip intercropping reduces the occurrence of Fusarium root rot and changes the diversity of the pathogenic Fusarium species. Pathogens, 2020, 9(3): 211-226.
doi: 10.3390/pathogens9030211
|
[11] |
赵敏, 赵锐锋, 张丽华, 赵海莉, 周远刚. 基于盐分梯度的黑河中游湿地植物多样性及其与土壤因子的关系. 生态学报, 2019, 39(11): 4116-4126.
|
|
ZHAO M, ZHAO R F, ZHANG L H, ZHAO H L, ZHOU Y G. Plant diversity and its relationship with soil factors in the middle reaches of the Heihe River based on the soil salinity gradient. Acta Ecologica Sinica, 2019, 39(11): 4116-4126. (in Chinese)
|
[12] |
TANG X, ZHONG R, JIANG J, HE L, HUANG Z, SHI G, WU H, LIU J, XIONG F, HAN Z, TANG R, HE L. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents. BMC Biotechnology, 2020, 20(1): 13-24.
doi: 10.1186/s12896-020-00606-1
|
[13] |
CAHILL J F, MCNICKLE G G, HAAG J J, LAMB E G, NYANUMBA S M, CLAIR C S. Plants integrate information about nutrients and neighbors. Science, 2010, 328(5986): 1657.
doi: 10.1126/science.1189736
|
[14] |
DUCHENE O, VIAN J F, CELETTE F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems & Environment, 2017, 240(2): 148-161.
doi: 10.1016/j.agee.2017.02.019
|
[15] |
SHI X L, ZHAO X H, REN J Y, DONG J L, ZHANG H, DONG Q Q, JIANG C J, ZHONG C, ZHOU Y F, YU H Q. Influence of peanut, sorghum, and soil salinity on microbial community composition in interspecific interaction zone. Frontiers in microbiology, 2021, 12(1306): 678250-678262.
doi: 10.3389/fmicb.2021.678250
|
[16] |
孙浩. 玉米、大豆间作对盐碱土壤微环境和植物养分状况的影响[D]. 青岛: 青岛农业大学, 2017.
|
|
SUN H. Effect of maize and soybean interplanting on rhizosphere soil microenvironment and plant nutrient status under saline-alkali soil condition[D]. Qingdao: Qingdao Agricultural University, 2017. (in Chinese)
|
[17] |
邹询, 王艳秋, 王佳旭, 段有厚, 张飞. 高粱-花生条带状种植群体光合物质生产效应分析. 辽宁农业科学, 2021(3): 29-32.
|
|
ZOU X, WANG Y Q, WANG J X, DUAN Y H, ZHANG F. Analysis of the effect of sorghum and peanut strip planting on the production of photosynthetic material. Liaoning Agricultural Sciences, 2021(3): 29-32. (in Chinese)
|
[18] |
左元梅, 张福锁. 不同禾本科作物与花生混作对花生根系质外体铁的累积和还原力的影响. 应用生态学报, 2004, 15(2): 221-225.
|
|
ZUO Y M, ZHANG F S. Effects of peanut mixed cropping with different gramineous plants on apoplast iron accumulation and reducing capacity of peanut. Chinese Journal of Applied Ecology, 2004, 15(2): 221-225. (in Chinese)
|
[19] |
孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16): 3265-3272.
|
|
SUN L, ZHOU Y F, LI F X, XIAO M J, TAO Y, XU W J, HUANG R D. Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings. Scientia Agricultura Sinica, 2012, 45(16): 3265-3272. (in Chinese)
|
[20] |
张智猛, 戴良香, 慈敦伟, 杨吉顺, 丁红, 秦斐斐, 穆国俊. 种植密度和播种方式对盐碱地花生生长发育、产量及品质的影响. 中国生态农业学报, 2016, 24(10): 1328-1338.
|
|
ZHANG Z M, DAI L X, CI D W, YANG J S, DING H, QIN F F, MU G J. Effects of planting density and sowing method on growth, development, yield and quality of peanut in saline alkali land. Chinese Journal of Eco-Agriculture, 2016, 24(10): 1328-1338. (in Chinese)
|
[21] |
BAĞCI S, EKIZ H, YILMAZ A. Salt tolerance of sixteen wheat genotypes during seedling growth. Turkish Journal of Agriculture and Forestry, 2007, 31(6): 363-372.
|
[22] |
ARMAS C, ORDIALES R, PUGNAIRE F I. Measuring plant interactions: A new comparative index. Ecology, 2004, 85(10): 2682-2686.
doi: 10.1890/03-0650
|
[23] |
章家恩, 高爱霞, 徐华勤, 罗明珠. 玉米/花生间作对土壤微生物和土壤养分状况的影响. 应用生态学报, 2009, 20(7): 1597-1602.
|
|
ZHANG J E, GAO A X, XU H Q, LUO M Z. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents. Chinese Journal of Applied Ecology, 2009, 20(7): 1597-1602. (in Chinese)
|
[24] |
朱锦惠, 董坤, 杨智仙, 董艳. 间套作控制作物病害的机理研究进展. 生态学杂志, 2017, 36(4): 1117-1126.
|
|
ZHU J H, DONG K, YANG Z X, DONG Y. Advances in the mechanism of crop disease control by intercropping. Chinese Journal of Ecology, 2017, 36(4): 1117-1126. (in Chinese)
|
[25] |
宋倩倩, 陈雯雯, 唐建军, 于振兴, 丁丽莲, 刘世俊, 任明磊, 陈欣. 土壤盐梯度下根际因子对植物邻体效应的影响. 浙江大学学报(农业与生命科学版), 2018, 44(5): 601-609, 649.
|
|
SONG Q Q, CHEN W W, TANG J J, YU Z X, DING L L, LIU S J, REN M L, CHEN X. Effects of rhizospheric factors on plant neighbor effects along a salinity gradient. Journal of Zhejiang University (Agriculture and Life Sciecces), 2018, 44(5): 601-609, 649. (in Chinese)
|
[26] |
陈雯雯. 沿盐胁迫梯度植物种间相互作用变化规律的研究[D]. 杭州: 浙江大学, 2014.
|
|
CHEN W W. Changes in interactions between plant species along a salinity[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
|
[27] |
李晓院, 解莉楠. 盐胁迫下植物Na+调节机制的研究进展. 生物技术通报, 2019, 35(7): 148-155.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0088
|
|
LI X Y, XIE L N. Research progress in Na+ regulation mechanism of plants under salt stress. Biotechnology Bulletin, 2019, 35(7): 148-155. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0088
|
[28] |
CHEN F Q, FANG P, PENG Y L, ZENG W J, ZHAO X Q, DING Y F, ZHUANG Z L, GAO Q H, REN B. Comparative proteomics of salt-tolerant and salt-sensitive maize inbred lines to reveal the molecular mechanism of salt tolerance. International Journal of Molecular Sciences, 2019, 20(19): 4725-4746.
doi: 10.3390/ijms20194725
|
[29] |
ZAFAR-UL-HYE M, TAHZEEB-UL-HASSAN M, ABID M, FAHAD S, BRTNICKY M, DOKULILOVA T, DATTA R, DANISH S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Scientific Reports, 2020, 10(1): 12159-12170.
doi: 10.1038/s41598-020-69183-9
|
[30] |
ZHANG J L, FLOWERS T J, WANG S M. Differentiation of low-affinity Na+ uptake pathways and kinetics of the effects of K+ on Na+ uptake in the halophyte Suaeda maritima . Plant and Soil, 2013, 368(1/2): 629-640.
doi: 10.1007/s11104-012-1552-5
|
[31] |
SUN J, CHEN S, DAI S, WANG R, LI N, SHEN X, ZHOU X, LU C, ZHENG X, HU Z, ZHANG Z, SONG J, XU Y. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiology, 2009, 149(2): 1141-1153.
doi: 10.1104/pp.108.129494
|
[32] |
CHAPAGAIN T, RISEMAN A. Barley-pea intercropping: Effects on land productivity, carbon and nitrogen transformations. Field Crops Research, 2014, 166(9): 18-25.
doi: 10.1016/j.fcr.2014.06.014
|
[33] |
唐秀梅, 黄志鹏, 吴海宁, 刘菁, 蒋菁, 唐荣华. 玉米/花生间作条件下土壤环境因子的相关性和主成分分析. 生态环境学报, 2020, 29(2): 223-230.
|
|
TANG X M, HUANG Z P, WU H N, LIU J, JIANG J, TANG R H. Correlation and principal component analysis of the soil environmental factors in corn/peanut intercropping system. Ecology and Environmental Sciences, 2020, 29(2): 223-230. (in Chinese)
|