中国农业科学 ›› 2022, Vol. 55 ›› Issue (10): 1903-1916.doi: 10.3864/j.issn.0578-1752.2022.10.003
任俊波(),杨雪丽,陈平,杜青,彭西红,郑本川,雍太文(),杨文钰
收稿日期:
2021-08-16
接受日期:
2021-10-09
出版日期:
2022-05-16
发布日期:
2022-06-02
联系方式:
任俊波,E-mail: 1094186424@qq.com。
基金资助:
REN JunBo(),YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen(),YANG WenYu
Received:
2021-08-16
Accepted:
2021-10-09
Published:
2022-05-16
Online:
2022-06-02
摘要:
【目的】探究玉米-大豆套作种间距离对土壤环境及根系空间分布的影响,以期为作物根系调控养分高效吸收提供理论依据。【方法】采用单因素随机区组试验设计,设置5种根系互作方式,其中玉米-大豆套作种间距分别为30 cm(MS30)、45 cm(MS45)、60 cm(MS60),单作玉米行间距100 cm(MM100),单作大豆行间距100 cm(SS100),研究玉米-大豆套作下土壤理化性状及根系空间分布的变化规律。【结果】玉米蜡熟期(R4)至成熟期(R6)、大豆始粒期(R5)至成熟期(R8),套作处理日平均土壤氧气含量、土壤呼吸速率随种间距离增加呈先增后减趋势;其中玉米土壤氧气含量MS45处理最高,MS30处理最低,而套作后的土壤呼吸速率均显著低于单作;大豆土壤呼吸速率以MS45处理最高,较SS100处理高130.00%,而套作后的土壤氧气含量均低于单作。与单作相比,套作玉米土壤中>5 mm水稳性团聚体含量、套作大豆土壤中5—2 mm水稳性团聚体含量、土壤NO- 3-N显著增加,其中均以MS45处理最高,较单作分别显著增加19.26%、4.49%、18.07%。共生期间,与单作相比,套作各处理玉米、大豆根系空间分布呈非对称性,套作玉米根系横向能延伸到大豆行的空间下方,纵向能下扎生长更深,套作大豆根系明显偏向大豆带生长,套作玉米和大豆根长、根表面积、根体积、根干重低于单作;玉米收获后,套作大豆根系恢复生长,在水平和垂直方向上进一步延伸,其中MS45处理的根体积高于单作。通过PCA分析,土壤养分含量和水稳性团聚体指标与根系形态参数呈正相关关系【结论】玉米-大豆带状套作合理的种间距离会促进土壤大团聚体的形成,增加土壤氧气含量,改善土壤通气环境及土壤养分状况,优化作物根系空间分布,促进根系生长发育。
任俊波, 杨雪丽, 陈平, 杜青, 彭西红, 郑本川, 雍太文, 杨文钰. 种间距离对玉米-大豆带状套作土壤理化性状及根系空间分布的影响[J]. 中国农业科学, 2022, 55(10): 1903-1916.
REN JunBo, YANG XueLi, CHEN Ping, DU Qing, PENG XiHong, ZHENG BenChuan, YONG TaiWen, YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System[J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
表1
不同种间距离对玉米根系形态特征的影响"
年份 Year | 处理 Treatment | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 根干重 Root dry weight (g) | 根平均直径 Average root diameter (mm) |
---|---|---|---|---|---|---|
2019 | MS30 | 3035.54±253.74b | 1509.25±23.45b | 25.03±1.16b | 4.3±0.20b | 0.57±0.08a |
MS45 | 3376.46±200.61ab | 1553.81±129.07b | 26.71±4.15b | 4.9±0.27b | 0.54±0.09a | |
MS60 | 2392.95±11.91c | 1341.97±67.88b | 23.15±3.14b | 4.48±0.49b | 0.64±0.06a | |
MM100 | 3675.02±25.57a | 1945.77±4.99a | 31.23±3.07a | 8.53±0.23a | 0.68±0.02a | |
2020 | MS30 | 3893.95±79.34bc | 1154.58±20.41ab | 34.8±3.59a | 6.11±0.46ab | 0.59±0.01a |
MS45 | 5187.74±290.73ab | 1267.58±110.99ab | 38.5±2.52a | 6.74±083ab | 0.55±0.02b | |
MS60 | 3632.25±37.03c | 1037.8±14.45b | 36.8±0.44a | 5.21±0.01b | 0.56±0.01ab | |
MM100 | 5845.21±772.39a | 1315.66±125.2a | 38.86±2.16a | 7.54±0.80a | 0.50±0.01c | |
F 值 F-value | ||||||
年份 Years (Y) | 46.53** | 49.17** | 43.75** | 5.88* | 2.84ns | |
种间距离 Interspecific distance (I) | 12.50** | 10.76** | 3.27* | 16.76* | 0.50ns | |
年份×种间距离 Y×I | 1.72ns | 2.03ns | 1.12ns | 3.60* | 1.80ns |
表2
不同种间距离对大豆根系形态特征的影响"
年份 Year | 处理 Treatment | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 根干重 Root dry weight (g) | 根平均直径 Average root diameter (mm) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
V5 | R5 | V5 | R5 | V5 | R5 | V5 | R5 | V5 | R5 | ||
2019 | MS30 | 184.32±25.89b | 1763.96±16.46c | 123.86±2.71b | 731.08±34.28a | 3.95±0.26b | 20.38±1.56b | 0.1±0.01b | 4.53±0.21a | 0.41±0.04a | 0.57±0.03a |
MS45 | 199.59±3.03b | 1888.87±40.3b | 131.21±7.98b | 929.41±259.04a | 4.24±0.36b | 30.18±3.45a | 0.15±0.02b | 4.89±0.04a | 0.42±0.03a | 0.62±0.03a | |
MS60 | 283.76±25.48ab | 1921.8±29.01b | 149.87±15.78b | 887.77±10.94a | 4.74±0.38ab | 27.15±0.12ab | 0.16±0.03b | 4.63±0.04a | 0.44±0.02a | 0.46±0.01b | |
SS100 | 618.77±223.59a | 2509.44±7.38a | 259.97±52.19a | 976.92±55.63a | 6.31±0.98a | 27.34±3.05ab | 0.48±0.05a | 4.79±0.02a | 0.37±0.01a | 0.54±0.04ab | |
2020 | MS30 | 233.42±42.44b | 3451.57±33.06ab | 139.99±8.48c | 735.73±18.43a | 3.39±0.11c | 28.72±0.44b | 0.23±0.05c | 5.26±0.27b | 0.33±0.02a | 0.48±0.01b |
MS45 | 347.75±49.28b | 3699.95±112.31ab | 193.35±8.65b | 780.95±7.14a | 3.97±0.11b | 37.32±1.31a | 0.55±0.04b | 7.47±0.44a | 0.36±0.04a | 0.47±0.05b | |
MS60 | 373.8±128.96b | 3162.52±249.54b | 227.58±5.93b | 722.74±6.23a | 4.37±0.06b | 29.59±0.29ab | 0.31±0.14bc | 6.9±0.37ab | 0.4±0.03a | 0.55±0.01ab | |
SS100 | 915.45±166.89a | 3918.37±225.69a | 303.66±25.46a | 833.37±84.86a | 5.69±0.30a | 35.58±4.53ab | 1.28±0.03a | 7.65±1.00a | 0.39±0.01a | 0.57±0.01a | |
F值 F-value | |||||||||||
年份 Years (Y) | 3.41ns | 291.45** | 10.29** | 2.59ns | 2.32ns | 14.780** | 84.30** | 49.55** | 3.67ns | 2.20ns | |
种间距离 Interspecific distance (I) | 10.25** | 11.28** | 17.30** | 1.09ns | 11.53** | 5.51** | 65.14** | 4.21* | 0.99ns | 1.26ns | |
年份×种间距离 Y×I | 0.47ns | 2.08ns | 0.72ns | 0.32ns | 0.07ns | 0.67ns | 14.71** | 2.51ns | 1.13ns | 7.63** |
表3
不同种间距对玉米、大豆土壤养分的影响"
处理 Treatment | 玉米R4 Maize R4 | 大豆V5 Soybean V5 | 大豆R5 Soybean R5 | ||||||
---|---|---|---|---|---|---|---|---|---|
土壤总氮Total N (g·kg-1) | 土壤铵态氮NH+ 4-N (mg·kg-1) | 土壤硝态氮NO- 3-N (mg·kg-1) | 土壤总态氮Total N (g·kg-1) | 土壤铵态氮NH+ 4-N (mg·kg-1) | 土壤硝态氮NO- 3-N (mg·kg-1) | 土壤总态氮Total N (g·kg-1) | 土壤铵态氮NH+ 4-N (mg·kg-1) | 土壤硝态氮NO- 3-N (mg·kg-1) | |
MS30 | 1.40±0.05ab | 6.67±0.03c | 32.26±2.31b | 1.33±0.04ab | 9.81±0.12a | 35.78±0.40b | 1.07±0.04a | 7.49±0.29a | 12.83±0.78ab |
MS45 | 1.35±0.04bc | 9.11±0.41ab | 30.21±3.47b | 1.26±0.02bc | 10.05±0.41a | 41.23±2.67a | 1.16±0.13a | 7.23±0.77a | 11.56±0.46c |
MS60 | 1.21±0.07c | 7.35±0.13bc | 13.63±0.64c | 1.38±0.04a | 9.05±0.73a | 39.14±0.51a | 1.16±0.09a | 7.19±0.27a | 12.00±0.24bc |
MM/SS100 | 1.53±0.03a | 10.10±1.04a | 49.27±2.72a | 1.18±0.03c | 8.40±0.94a | 34.92±2.47b | 1.30±0.17a | 7.95±1.32a | 13.10±0.90a |
[1] |
FAN Z L, CHAI Q, YU A Z, ZHAO C, YIN W, HU F L, CHEN G D, CAO W D, COULTER J A. Water and radiation use in maize-pea intercropping is enhanced with increased plant density. Agronomy Journal, 2020, 112(1): 257-273.
doi: 10.1002/agj2.20009 |
[2] |
LIU X, RAHMAN T, YANG F, SONG C, YONG T W, LIU J, ZHANG C Y, YANG W Y. PAR interception and utilization in different maize and soybean intercropping patterns. PLoS ONE, 2017, 12(1): e0169218.
doi: 10.1371/journal.pone.0169218 |
[3] |
BROOKER R W, BENNETT A E, CONG W F, DANIELL T J, GEORGE T S, HALLETT P D, HAWES C, IANNETTA P P, JONES H G, KARLEY A J, LI L, MCKENZIE B M, PAKEMAN R J, PATERSON E, SCHOB C, SHEN J, SQUIRE G, WATSON C A, ZHANG C, ZHANG F, ZHANG J, WHITE P J. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206(1): 107-117.
doi: 10.1111/nph.13132 |
[4] |
杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量,根系形态及产量的影响. 作物学报, 2015, 41(4): 642-650.
doi: 10.3724/SP.J.1006.2015.00642 |
YANG F, LOU Y, LIAO D P, GAO R C, YONG T W, WANG X C, LIU W G, YANG W Y. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agronomica Sinica, 2015, 41(4): 642-650. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00642 |
|
[5] |
RICH S M, WATT M. Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. Journal of Experimental Botany, 2013, 64(5): 1193-1208.
doi: 10.1093/jxb/ert043 |
[6] |
DREW M C. Soil aeration and plant root metabolism. Soil Science, 1992, 154(4): 259-268.
doi: 10.1097/00010694-199210000-00002 |
[7] | 周晚来, 易永健, 屠乃美, 谭志坚, 汪洪鹰, 杨媛茹, 王朝云, 易镇邪. 根际增氧对水稻根系形态和生理影响的研究进展. 中国生态农业学报, 2018, 26(3): 367-376. |
ZHOU W L, YI Y J, TU N M, TAN Z J, WANG H Y, YANG Y R, WANG C Y, YI Z X. Research progresses in the effects of rhizosphere oxygen-increasing on rice root morphology and physiology. Chinese Journal of Eco-Agriculture, 2018, 26(3): 367-376. (in Chinese) | |
[8] |
GAMBOA C H, VEZZANI F M, KASCHUK G, FAVARETTO N, COBOS J Y G, COSTA G A D. Soil-root dynamics in maize- beans-eggplant intercropping system under organic management in a subtropical region. Journal of Soil Science and Plant Nutrition, 2020, 20(3): 1480-1490.
doi: 10.1007/s42729-020-00227-9 |
[9] |
LIU Y X, SUN J H, ZHANG F F, LI L. The plasticity of root distribution and nitrogen uptake contributes to recovery of maize growth at late growth stages in wheat/maize intercropping. Plant and Soil, 2019, 447(1-2): 39-53.
doi: 10.1007/s11104-019-04034-9 |
[10] |
LIU Y X, ZHANG W P, SUN J H, LI X F, CHRISTIE P, LI L. High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Plant and Soil, 2015, 397(1-2): 387-399.
doi: 10.1007/s11104-015-2654-7 |
[11] | 刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273. |
LIU J Y, ZHOU Z C, SU X M. Review of the mechanism of root system on the formation of soil aggregates. Journal of Soil and Water Conservation, 2020, 34(3): 267-273. (in Chinese) | |
[12] | 张维俊, 李双异, 徐英德, 刘旭, 安婷婷, 朱平, 彭畅, 汪景宽. 土壤孔隙结构与土壤微环境和有机碳周转关系的研究进展. 水土保持学报, 2019, 33(4): 1-9. |
ZHANG W J, LI S Y, XU Y D, LIU X, AN T T, ZHU P, PENG C, WANG J K. Advances in research on relationships between soil pore structure and soil miocroenvironment and organic carbon turnover. Journal of Soil and Water Conservation, 2019, 33(4): 1-9. (in Chinese) | |
[13] |
LI L, SUN J H, ZHANG F S, GUO T W, BAO X G, SMITH F A, SMITH S E. Root distribution and interactions between intercropped species. Oecologia, 2006, 147(2): 280-290.
doi: 10.1007/s00442-005-0256-4 |
[14] |
王鹏, 牟溥, 李云斌. 植物根系养分捕获塑性与根竞争. 植物生态学报, 2012, 36(11): 1184-1196.
doi: 10.3724/SP.J.1258.2012.01184 |
WANG P, MOU P, LI Y B. Review of root nutrient foraging plasticity and root competition of plants. Chinese Journal of Plant Ecology, 2012, 36(11): 1184-1196. (in Chinese)
doi: 10.3724/SP.J.1258.2012.01184 |
|
[15] |
XIA H Y, ZHAO J H, SUN J H, BAO X G, CHRISTIE P, ZHANG F S, LI L. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 2013, 150: 52-62.
doi: 10.1016/j.fcr.2013.05.027 |
[16] |
GAO Y, DUAN A W, QIU X Q, LIU Z G, SUN J S, ZHANG J P, WANG H Z. Distribution of roots and root length density in a maize/soybean strip intercropping system. Agricultural Water Management, 2010, 98(1): 199-212.
doi: 10.1016/j.agwat.2010.08.021 |
[17] | LI L, LI S M, SUN J H, ZHOU L L, BAO X G, ZHANG H G, ZHANG F S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192-11196. |
[18] | 李玉英, 胡汉升, 程序, 孙建好, 李隆. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31(6): 1617-1630. |
LI Y Y, HU H S, CHENG X, SUN J B, LI L. Effects of interspecific interactions and nitrogen fertilization rates on above- and below- growth in faba bean/mazie intercropping system. Acta Ecologica Sinica, 2011, 31(6):1617-1630. (in Chinese) | |
[19] |
XIA H Y, WANG Z G, ZHAO J H, SUN J H, BAO X G, CHRISTIE P, ZHANG F S, LI L. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Research, 2013, 154: 53-64.
doi: 10.1016/j.fcr.2013.07.011 |
[20] | 庞婷, 帅鹏, 陈平, 杜青, 付智丹, 杨文钰, 雍太文. 不同结瘤品种和行间距对套作大豆根瘤生长及物质积累与分配的影响. 浙江大学学报(农业与生物科学版), 2017, 43(4): 451-461. |
PANG T, SHUAI P, CHEN P, DU Q, FU Z D, YANG W Y, YONG T W. Effects of different nodulation varieties and row spacings on nodule growth, dry matter accumulation and distribution of relay strip intercropping soybean. Journal of Zhejiang University(Agriculture and Life Sciences), 2017, 43(4): 451-461. (in Chinese) | |
[21] |
WANG M, LIU X T, ZHANG J T, LI X J, WANG G D, LI X Y, LU X R. Diurnal and seasonal dynamics of soil respiration at temperate Leymus chinensis meadow steppes in western Songnen plain, China. Chinese Geographical Science, 2014, 24(3): 287-296.
doi: 10.1007/s11769-014-0682-5 |
[22] | 依艳丽. 土壤物理研究法. 北京: 北京大学出版社. 2009: 59-63. |
YI Y L. Soil Physics Research Method. Beijing: Beijing University Press, 2009: 59-63. (in Chinese) | |
[23] | 杜森. 土壤分析技术规范(第二版). 北京: 中国农业出版社, 2006: 44-49. |
DU S. Technical Specification for Soil Analysis (2nd Edition). Beijing: China Agricultural Press, 2006: 44-49. (in Chinese) | |
[24] |
KRAVCHENKO A N, GUBER A K. Soil pores and their contributions to soil carbon processes. Geoderma, 2017, 287: 31-39.
doi: 10.1016/j.geoderma.2016.06.027 |
[25] |
SONG Y N, ZHANG F S, MARSCHNER P, FAN F L, GAO H M, BAO X G, SUN J H, LI L. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils, 2006, 43(5): 565-574.
doi: 10.1007/s00374-006-0139-9 |
[26] |
OBALUM S E, OBI M E. Physical properties of a sandy loam Ultisol as affected by tillage-mulch management practices and cropping systems. Soil and Tillage Research, 2010, 108(1-2): 30-36.
doi: 10.1016/j.still.2010.03.009 |
[27] | RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44(2): 81-99. |
[28] | 雷宏军, 胡世国, 潘红卫, 臧明, 刘鑫, 李轲. 土壤通气性与加氧灌溉研究进展. 土壤学报, 2017, 54(2): 297-308. |
LEI H J, HU S G, PAN H W, ZANG M, LIU X, LI K. Advancement in research on soil aeration and oxygation. Acta Pedologica Sinica, 2017, 54(2): 297-308. (in Chinese) | |
[29] |
LIU S B, CHAI Q, HUANG G B. Relationships among soil respiration, soil temperature and dry matter accumulation for wheat-maize intercropping in an arid environment. Canadian Journal of Plant Science, 2013, 93(4): 715-724.
doi: 10.4141/cjps2012-274 |
[30] | 张静, 刘娟, 陈浩, 杜彦修, 李俊周, 孙红正, 赵全志. 干湿交替条件下稻田土壤氧气和水分变化规律研究. 中国生态农业学报, 2014, 22(4): 408-413. |
ZHANG J, LIU J, CHEN H, DU Y X, LI J Z, SUN H Z, ZHAO Q Z. Change in soil oxygen and water contents under alternate wetting and drying in paddy fields. Chinese Journal of Eco-Agriculture, 2014, 22(4): 408-413. (in Chinese) | |
[31] | 王维钰, 乔博, AKHTAR K, 袁率, 任广鑫, 冯永忠. 免耕条件下秸秆还田对冬小麦-夏玉米轮作系统土壤呼吸及土壤水热状况的影响. 中国农业科学, 2016, 49(11): 2136-2152. |
WANG W Y, QIAO B, AKHTAR K, YUAN S, REN G X, FENG Y Z. Effects of straw returning to field on soil respiration and soil water heat in winter wheat-summer maize rotation system under no tillage. Scientia Agricultura Sinica, 2016, 49(11): 2136-2152. (in Chinese) | |
[32] |
HAN G X, ZHOU G S, XU Z Z, YANG Y, LIU J L, SHI K Q. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology and Biochemistry, 2007, 39(2): 418-425.
doi: 10.1016/j.soilbio.2006.08.009 |
[33] | 朱艳, 蔡焕杰, 宋利兵, 侯会静, 陈慧. 加气灌溉下气候因子和土壤参数对土壤呼吸的影响. 农业机械学报, 2016, 47(12): 223-232. |
ZHU Y, CAI H J, SONG L B, HOU H J, CHEN H. Effects of climatic factors and soil parameters on soil respiration under oxygation conditions. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 223-232. (in Chinese) | |
[34] | 赵财, 陈桂平, 柴强, 文玉良. 不同种植模式对农田土壤呼吸速率的影响. 甘肃农业大学学报, 2016, 51(6): 24-29. |
ZHAO C, CHEN G P, CHAI Q, WEN Y L. Effects of different cropping systems on farmland soil respiration. Journal of Gansu Agricultural University, 2016, 51(6): 24-29. (in Chinese) | |
[35] | 雍太文, 刘小明, 刘文钰, 周丽, 宋春, 杨峰, 蒋利, 王小春, 杨文钰. 减量施氮对玉米-大豆套作系统下作物氮素吸收和利用效率的影响. 生态学报, 2015, 35(13): 4473-4482. |
YONG T W, LIU X M, LIU W Y, ZHOU L, SONG C, YANG F, JIANG L, WANG X C, YANG W Y. Effects of reduced nitrogen application on nitrogen uptake and utilization efficiency in maize- soybean relay strip intercropping system. Acta Ecologica Sinica, 2015, 35(13) :4473-4482. (in Chinese) | |
[36] | 雍太文, 杨文钰, 任万军, 樊高琼, 向达兵. 两种三熟套作体系中的氮素转移及吸收利用. 中国农业科学, 2009, 42(9): 3170-3178. |
YONG T W, YANG W Y, REN W J, FAN G Q, XIANG D B. Analysis of the nitrogen transfer, nitrogen uptake and utilization in the two relay-planting systems. Scientia Agricultura Sinica, 2009, 42(9): 3170-3178. (in Chinese) | |
[37] | 刘小明, 雍太文, 刘文钰, 苏本营, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作体系土壤氮素残留和氮肥损失的影响. 应用生态学报, 2014, 25(8): 2267-2274. |
LIU X M, YONG T W, LIU W Y, SU B Y, SONG C, YANG F, WANG X C, YANG W Y. Effect of reduced N application on soil N residue and N loss in maize-soybean relay strip intercropping system. Chinese Journal of Applied Ecology, 2014, 25(8): 2267-2274. (in Chinese) | |
[38] | 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究. 中国农业科学, 2005, 38(5): 965-973. |
XIAO Y B, LI L, ZHANG F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and fababean. Scientia Agricultura Sinica, 2005, 38(5): 965-973. (in Chinese) | |
[39] | GEISLER G. Interactive Effects of CO2 and O2 in soil on root and top growth of barley and peas. Plant Physiology, 1967, 42(3): 533-542. |
[40] |
LIU Z, ZHU K L, DONG S T, LIU P, ZHAO B, ZHANG J W. Effects of integrated agronomic practices management on root growth and development of summer maize. European Journal of Agronomy, 2017, 84: 140-151.
doi: 10.1016/j.eja.2016.12.006 |
[41] |
YANG F, HUANG S, GAO R C, LIU W G, YONG T W, WANG X C, WU X L, YANG W Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research, 2014, 155: 245-253.
doi: 10.1016/j.fcr.2013.08.011 |
[42] |
LI L, SUN J H, ZHANG F S, LI X L, RENGEL Z, YANG S C. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research, 2001, 71(3): 173-181.
doi: 10.1016/S0378-4290(01)00157-5 |
[1] | 于茹, 宋佳珅, 张宏媛, 常芳弟, 王永庆, 王希全, 王婧, 王伟妮, 李玉义. 秸秆隔层结合春灌对河套灌区盐碱地土壤呼吸及其温度敏感性的影响[J]. 中国农业科学, 2023, 56(12): 2341-2353. |
[2] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[3] | 庞婷,陈平,袁晓婷,雷鹿,杜青,付智丹,张晓娜,周颖,任建锐,王甜,汪锦,杨文钰,雍太文. 种间距对不同结瘤特性套作大豆物质积累、 鼓粒及产量形成的影响[J]. 中国农业科学, 2019, 52(21): 3751-3762. |
[4] | . 不同氮吸收效率玉米品种的根系构型差异比较:模拟与应用 [J]. 中国农业科学, 2009, 42(3): 843-853 . |
|