中国农业科学 ›› 2022, Vol. 55 ›› Issue (17): 3321-3333.doi: 10.3864/j.issn.0578-1752.2022.17.005

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

不同水氮条件下冬小麦穗器官临界氮稀释模型研究

赵晓慧1(),张艳艳1,戎亚思1,段剑钊1,贺利1,2,刘万代1(),郭天财1,冯伟1,2()   

  1. 1河南农业大学农学院,郑州 450046
    2教育部作物生长发育调控重点实验室,郑州 450046
  • 收稿日期:2021-11-23 接受日期:2022-01-28 出版日期:2022-09-01 发布日期:2022-09-07
  • 通讯作者: 刘万代,冯伟
  • 作者简介:赵晓慧,E-mail: zhaoxiaohui6610@163.com
  • 基金资助:
    国家自然科学基金(31671624)

Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions

ZHAO XiaoHui1(),ZHANG YanYan1,RONG YaSi1,DUAN JianZhao1,HE Li1,2,LIU WanDai1(),GUO TianCai1,FENG Wei1,2()   

  1. 1College of Agronomy, Henan Agricultural University, Zhengzhou 450046
    2Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, Zhengzhou 450046
  • Received:2021-11-23 Accepted:2022-01-28 Online:2022-09-01 Published:2022-09-07
  • Contact: WanDai LIU,Wei FENG

摘要:

【目的】 开花后穗部器官成为小麦生长中心,保证穗部充足的氮素营养是籽粒产量和蛋白品质形成的基础,精确诊断穗氮营养对预测评价产量和品质具有重要意义。【方法】 选用周麦27和豫麦49-198为材料,在大田条件下设置3个灌溉条件(W0:雨养、W1:拔节期浇水1次、W2:拔节和开花各浇水1次)和5个施氮水平(0(N0)、90 kg·hm-2(N6)、180 kg·hm-2(N12)、270 kg·hm-2(N18)和360 kg·hm-2(N24)),于小麦开花后不同的灌浆时段采集各处理小麦穗器官干物质及氮素含量数据,构建不同灌溉条件下冬小麦穗器官的临界氮稀释(Nc)曲线,并于成熟期测定籽粒产量和蛋白质含量。【结果】 在同一灌溉条件下,随着施氮量的增加,穗部干物质及氮含量均增加;不同灌溉条件下的穗部临界氮浓度与生物量间均符合幂指数关系,不同灌溉条件的模型间存在差异(W0: Nc=2.58 DM-0.242; W1: Nc=2.92 DM-0.24; W2: Nc=3.10 DM-0.231)。氮营养指数(NNI)在不同灌溉条件下均随着施氮量的增加而增加,适宜施氮量因灌溉条件而异,雨养条件为180—270 kg·hm-2,灌溉条件为270 kg·hm-2左右。相对产量(RY)与NNI之间显著相关,具体表现为线性+平台特征,在雨养条件下NNI为1.01时,RY获得最大值;而在灌溉条件下NNI为0.97时,RY获得最大值。籽粒蛋白含量与NNI之间呈显著的线性定量关系,灌溉导致蛋白质含量有所降低。【结论】 确立的穗器官Nc及NNI模型,能够有效指示不同水氮条件下小麦氮素丰缺变化,实时评价产量状况,准确预测蛋白质含量,为小麦生育后期的田间及收储管理提供参考和依据。

关键词: 小麦穗, 灌溉条件, 临界氮浓度, 氮营养指数, 产量, 蛋白质含量

Abstract:

【Objective】 The spike organ becomes the growth center after anthesis in wheat, so ensuring sufficient nitrogen nutrition in spike organ is the basis of grain yield and protein quality formation. The accurate diagnosis of spike nitrogen nutrition is of great significance for predicting wheat yield and quality. 【Method】 Zhoumai 27 and Yumai 49-198 were used as wheat materials, and three irrigation treatments under field conditions (W0: rain-fed, W1: single irrigation at jointing, W2: irrigation at jointing and anthesis) and five nitrogen application levels (0 (N0), 90 kg·hm-2 (N6), 180 kg·hm-2 (N12), 270 kg·hm-2 (N18) and 360 kg·hm-2 (N24)) were set in this experiment. The dry matter and nitrogen content data of wheat spike organs at different filling periods were collected for constructing critical nitrogen dilution (Nc) curve of spike organs under different irrigation conditions, and the wheat grain yield and protein content were measured at maturity stage. 【Result】 Under the same irrigation condition, the dry matter and nitrogen content of spike organ both increased with the increase of nitrogen application rate. All the relationships between spike critical nitrogen concentration and spike biomass under different irrigation conditions were power exponent, and the different models showed the difference under different irrigation conditions (W0: Nc=2.58 DM-0.242; W1: Nc=2.92 DM-0.24; W2: Nc=3.10 DM-0.231). Nitrogen nutrition index (NNI) increased with the increase of nitrogen application rate under different irrigation conditions, and the suitable nitrogen application rate varied with the irrigation conditions, with 180-270 kg·hm-2 for rainfed conditions and about 270 kg·hm-2 for irrigation conditions. There was a significant correlation between relative yield (RY) and NNI, which was expressed as linear + platform characteristics. The NNI values of gaining the highest relative yield were different under different irrigation conditions, with 1.01 under rainfed condition and 0.97 under irrigated condition. There was a significant linear quantitative relationship between grain protein content and NNI of wheat, and the irrigation led to a decrease in protein content. 【Conclusion】 The spike organ Nc and NNI models established in this study could effectively indicate the changes in wheat spike nitrogen abundance and deficiency under different water and nitrogen conditions, evaluate the yield status in real time, and accurately predict protein content. These results provided the reference and basis for the field and storage management in the later stage of wheat growth.

Key words: wheat spike, irrigation conditions, critical nitrogen concentration, nitrogen nutrition index, yield, protein content