中国农业科学 ›› 2022, Vol. 55 ›› Issue (22): 4458-4472.doi: 10.3864/j.issn.0578-1752.2022.22.011
朱延松1(),张亚飞1,程莉1,杨胜男1,赵婉彤1,2,江东1,2(
)
收稿日期:
2022-02-24
接受日期:
2022-05-23
出版日期:
2022-11-16
发布日期:
2022-12-14
通讯作者:
江东
作者简介:
朱延松,E-mail:基金资助:
ZHU YanSong1(),ZHANG YaFei1,CHENG Li1,YANG ShengNan1,ZHAO WanTong1,2,JIANG Dong1,2(
)
Received:
2022-02-24
Accepted:
2022-05-23
Online:
2022-11-16
Published:
2022-12-14
Contact:
Dong JIANG
摘要:
【背景】 芽变是植物分生组织体细胞所发生的DNA突变,从而引起枝、叶、花、果及物候期、成熟期等系列表型特征的改变,其变异性状可遗传。然而由于环境条件、栽培技术等,植物可能产生彷徨变异,这种变异不可遗传。【目的】 利用高通量测序技术建立一套适用于柑橘芽变资源鉴定的方法,为柑橘种质资源的收集、保存、鉴定提供技术支撑。【方法】 为提高芽变材料的分子鉴定能力,本研究通过对‘克里曼丁’以及‘温州蜜柑’全基因组数据以及‘温州蜜柑’GSS、EST数据进行分析、比对,筛选出多态性高的位点用于深度测序。根据引物互补结构对引物进行分组后用于多重扩增检测及构建双端测序文库,构建好的文库通过Miniseq平台完成高通量测序,使用生物信息学方法对下机数据进行后续分析。【结果】 通过对大量测序数据的分析、比对,本研究共设计出77对用于柑橘芽变鉴定的SSR引物,根据引物互补结构,将引物分成18个组合。通过对60份柑橘材料进行Target SSR-seq分析,所设计引物可以将所测试的柑橘种质资源分为甜橙和宽皮柑橘,在宽皮柑橘中可细分为‘沃柑’‘椪柑’以及杂柑等栽培种,对于栽培种内芽变资源也具有较好的鉴别能力。在7个‘塔罗科’血橙芽变中发现11个SSR变异位点,2个‘五月红’芽变中发现8个SSR变异位点,5个脐橙样品中发现8个SSR变异位点,9个‘冰糖橙’品种中发现16个SSR变异位点,2个‘砂糖橘’芽变中发现9个SSR变异位点,4个‘温州蜜柑’芽变中发现15个芽变位点,8个‘沃柑’芽变中发现21个SSR变异位点,‘沃柑’杂交品种中发现11个SSR变异位点,在‘椪柑’中发现14个SSR变异位点。在SSR位点变异中,‘塔罗科’血橙以ATT基序最多,‘五月红’以TAA基序最多,脐橙以TAA基序最多,‘冰糖橙’以GA基序最多,‘砂糖橘’以AAT基序最多,‘温州蜜柑’以AAT基序最多,‘沃柑’芽变资源以AAT基序最多,‘沃柑’杂交资源以TAA、GA基序最多。【结论】 使用Target SSR-seq技术建立了一套高效的柑橘芽变鉴定方法。对所试验的60份柑橘资源具有鉴别能力,SSR基因分型信息准确、可靠,可用于柑橘种质资源管理和品种知识产权保护。
朱延松,张亚飞,程莉,杨胜男,赵婉彤,江东. 利用Target SSR-seq技术鉴定60份柑橘种质资源[J]. 中国农业科学, 2022, 55(22): 4458-4472.
ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology[J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
表1
60个测序样品信息"
类群 Group | 编号 Code | 名称 Name | 类群 Group | 编号 Code | 名称 Name | |
甜橙类 C. sinensis Osbeck | 1 | 锦秀冰糖橙 Jin Xiu Bing Tang Cheng | 杂柑类 C. reticulata Blanco | 31 | 清见 Kiyomi | |
2 | 锦红大果冰糖橙 Jin Hong Da Guo Bing Tang Cheng | 32 | 黄皮清见 Yellow Peel Kiyomi | |||
3 | 锦红最红冰糖橙 Jin Hong Zui Hong Bing Tang Cheng | 33 | 不知火 Shiranui | |||
4 | 锦玉冰糖橙 Jin Yu Bing Tang Cheng | 34 | 黄皮不知火 Yellow Peel Shiranui | |||
5 | 椭圆冰糖橙 Tuo Yuan Bing Tang Cheng | 35 | 红美人 Beni Madonna | |||
6 | 冰糖橙仁4 Bing Tang Cheng Ren 4 | 36 | 黄皮红美人 Yellow Peel Beni Madonna | |||
7 | 冰糖橙仁5 Bing Tang Cheng Ren 5 | 温州蜜柑 C. unshiu Mac. | 37 | 宫川温州蜜柑 Miyagawa unshiu | ||
8 | 品质特异5号冰糖橙 No. 5 Bing Tang Cheng | 38 | 大分4号温州蜜柑 Oita No.4 Wase | |||
9 | 新冰30号冰糖橙 Xin Bing 30 Hao Bing Tang Cheng | 39 | 大浦5号温州蜜柑 Ooura No.5 Wase | |||
10 | 橘湘元 Ju Xiang Yuan | 40 | 大分1号温州蜜柑 Oita No.1 Wase | |||
11 | 塔罗科血橙1 Tarroco blood orange No. 1 | 41 | 青皮蜜橘 Qing Pi Mi Ju | |||
12 | 塔罗科血橙2 Tarroco blood orange No. 2 | 42 | 金葵早熟蜜橘 Jin Kui Early Mi Ju | |||
13 | 塔罗科血橙3 Tarroco blood orange No. 3 | 椪柑 C. reticulata Blanco | 43 | 蜂洞橘椪柑 Feng Dong Ju Ponkan | ||
14 | 塔罗科血橙4 Tarroco blood orange No. 4 | 44 | 衢州椪柑 Qu Zhou Ponkan | |||
15 | 塔罗科99 Tarroco No. 99 | 45 | 兴春椪柑 Kousyun Ponkan | |||
16 | 塔罗科新系 Tarroco New Line | 46 | 早蜜椪柑 Zao Mi Ponkan | |||
17 | 塔罗科血橙(Thermal) Tarroco blood orange Thermal | 47 | 黔阳无核椪柑 Qian Yang Seedless Ponkan | |||
18 | 卡拉卡拉 Cara Cara | 48 | 立山64 Li Shan 64 Ponkan | |||
19 | 晚红血橙 Wan Hong blood orange | 49 | 椪柑 Ponkan | |||
20 | 五月红 Wu Yue Hong | 沃柑芽变 C. reticulata Blanco | 50 | 无核沃柑9号 Seedless Orah No.9 | ||
21 | 五月红51-13 Wu Yue Hong 51-13 | 51 | 无核沃柑10号 Seedless Orah No.10 | |||
22 | 班菲 Barfield navel orange | 52 | 无核沃柑8号 Seedless Orah No.8 | |||
23 | 赣脐4号 Gan Qi No.4 | 53 | 皱皮沃柑 Wrinkle Orah | |||
24 | 贺脐1号 He Qi No.1 | 54 | 武鸣沃柑 Wu Ming Orah | |||
25 | 纽荷尔 Newhell navel orange | 55 | 有核沃柑 Orah | |||
26 | 奉节晚脐 Feng Jie late navel orange | 56 | 少核沃柑 Seedless Orah | |||
27 | 桂橙1号 Gui Cheng No. 1 | 57 | 无核沃柑 Orri | |||
28 | 石棉纽荷尔 Shi Mian Newhell navel orange | 沃柑杂交 C. reticulata Blanco | 58 | 沃柑×青皮蜜橘 Orah × Qing Pi Mi Ju | ||
砂糖橘 C. reticulata Blanco | 29 | 砂糖橘 Sha Tang Ju | 59 | 少核沃柑×塔罗科血橙 Seedless Orah × Tarroco blood orange | ||
30 | 无核砂糖橘 Seedless Sha Tang Ju | 60 | 沃柑×甘平 Orah × Kanpei |
表2
位点验证引物"
类群 Group | 位点 Site | 引物编号 Primer code | 引物序列 Sequence | 目标产物大小 Production length (bp) |
冰糖橙 Bing Tang Cheng | Scaffold_7 20854883 | Neast_1-F | TGCTTGCTTTTGTACTCCTTCT | 848 |
Neast_1-R | TCGACACTTACGTACGTTGC | |||
Test_1-F | GCTTGGCTGGATCCTACAAA | 187 | ||
Test_1-R | ATCTGAGCGGTGCCATATCA | |||
沃柑 Orah | Scaffold_7 346954 | Neast_2-F | TGGCAGTTGTTAACCCAAGC | 646 |
Neast_2-R | GCCTTTCGCGCCAACAATTT | |||
Test_2-F | CAACTGTGATGCGTATTTCCG | 309 | ||
Test_2-R | GCACAGTCAACTAACGGTCA |
表3
本研究使用的SSR引物序列"
编号 Code | 正向序列 Forward | 反向序列 Reverse |
>MK1 | AATGACGACGACAACGATGA | TGGAATCGGAATGGATTGTT |
>MK2 | TGAAATTGACGATGGAGAGAAG | ATGGCAACTTCTCCAGCAAA |
>MK3 | CGATGGAGAGAAGTAACGAAGAA | GGTCCAAAATCAACAAATGG |
>MK4 | CGAAGAAATTGCACAAGAGAGA | GGTCCAAAATCAACAAATGG |
>MK5 | GAAACCTTGCTGCGCTTTT | CACCTTGATGTAGAAAGCATGA |
>MK6 | TTTACAGCCCTAAGCGGAAA | CGAAAATGCCCTTTGTTGAT |
>MK7 | CTGGGGCTCACATAAATCGT | GATTTGTCCGCCAATCAAGT |
>MK8 | GCATTGCAGCACTTTTGTCAT | GATTTGTCCGCCAATCAAGT |
>MK9 | GCATTGCAGCACTTTTGTCAT | CAAACTCAACTAACGGATGGTAAG |
>MK10 | ACAACAATGGGGTCAAGCAC | CCACTGTCAAACTCCAAAATGA |
>MK11 | AATGGGGTCAAGCACATTTT | CAAAGGAAACACGAATTCAACC |
>MK12 | GGTGCAACACATCTCAAAGC | TTTGTCGAAGATGGTCGATT |
>MK13 | CAGCTGTTCTGAGAGACTTTTCTT | TCCGTACTGTTTGGGATTACG |
>MK14 | CCTTCTCGAATGAAAACATCCT | TCCGTACTGTTTGGGATTACG |
>MK15 | GATGAAGTGGGCAGTTACGTT | TTGGGCTTGACATAAAAGCA |
>MK16 | AGCTACCCACCTCGTTGAAT | ACCAGTACCACTGCTTACTCTTTT |
>MK17 | CCCACCTCGTTGAATCTCTC | ACCAGTACCACTGCTTACTCTTTT |
>MK18 | CAATGATACACCCCAGAGCA | ACCAGTACCACTGCTTACTCTTTT |
>MK19 | GGGTTGGGAATGTGAATGAA | CCTAGGGGTGGGCATATTTT |
>MK20 | GTGCATCACACCACAGCTTC | TGGCATGAGGGTAGTCAATTTT |
>MK21 | TCGATGTCATGTGTTATGCTTG | AAGTAACACGGGATGGTTGC |
>MK22 | TGTGTTATGCTTGTTAGACACCTG | AAGTAACACGGGATGGTTGC |
>MK23 | AGGCATGAGAGAGAGTTGACTT | CGAGGTTATCATCCGAATCC |
>MK24 | AAATGCAATGTGGGCTATGC | TTCTGGAAGTGAGCCACAAG |
>MK25 | GCAATGTGGGCTATGCATTT | CCTTCCCTGAATTCGAGCAT |
>MK26 | GGTGATGATGAATGCGTGAA | TCTCGTCTGCTAATCGCATC |
>MK27 | GATGAATGCGTGAAATCGAC | CGTCTGCTAATCGCATCTTTC |
>MK28 | CGTAAGGCTCGCTATGTCCT | AATCGATCGGCTGGACTAAA |
>MK29 | CCACCGTCGAGGTCATTTAT | AAATCGATCGGCTGGACTAA |
>MK30 | GGGCAGTGGCAATAAGAATG | ATGGGCTTCAACACACATGA |
>MK31 | TCAGCACCACAAGTCAATCC | ACATGGGTGGAGAGCAAACT |
>MK32 | TCAGCACCACAAGTCAATCC | GAAATCTGGGGTTCAAATCG |
>MK33 | CATTCTTTCCCTCCACTCCA | AACCCAATGCTTGCTTTTGT |
>MK34 | ATGAGGCTTGCGAGGTTTA | CAAGGCCAGGTGGACAAATA |
>MK35 | TGAGGCTTGCGAGGTTTAT | CAAATACCAGAGCCAAATCTCC |
>MK36 | GGCTGTTGCCGCATTAGTTA | ACAAGGCTCCAGCGACAG |
>MK37 | GCCAAAGCCCAAACTCAATA | ACGAGAGCCAACCTGACATC |
编号 Code | 正向序列 Forward | 反向序列 Reverse |
>MK38 | TTGCTTTTGTACTCCTTTAGGC | ACGAGAGCCAACCTGACATC |
>MK39 | TTGCTTTTGTACTCCTTTAGGC | CCCAATGCTTTTCCATTTTC |
>MK40 | AATTAAATGCACGGCAAGGA | CAAATCTCCACTTGCAGACG |
>MK41 | ATTAAATGCACGGCAAGGAG | CAAATCTCCACTTGCAGACG |
>MK42 | ATTAAATGCACGGCAAGGAG | AGGCATAGATGATCCACCTCA |
>MK43 | GTGCCACTACTGTTACGTTCTTTT | TTAGTTCATGGGTGAATGGTG |
>MK44 | GCCTTCATTTCTTGGTTGATG | ATGGAAAATTGGGGAAAAGC |
>MK45 | TCATTGGCACCATCATCATT | ATGGAAAATTGGGGAAAAGC |
>MK46 | TATCATTGGCACCATCATCA | GGCCACGTCATTCAAGAAAT |
>MK47 | TCATTGGCACCATCATCATT | AGTAGGCCACGTCATTCAAG |
>MK48 | TCATTGGCACCATCATCATT | TTGAAATAGTAGGCCACGTCA |
>MK49 | TCATTGGCACCATCATCATT | GGAAAATTCCCTAATCCTGAGA |
>MK50 | AAAAGGTCATGTGCATCCAA | ATTGGCAGCATGCAAGATA |
>MK51 | AAAAGGTCATGTGCATCCAA | TGGTGGCAGTAGTGTTGTAGTAA |
>MK52 | TCTTGCATGCTGCCAATAA | TGGTGGCAGTAGTGTTGTAGTAA |
>MK53 | GTTTTCTATTCGGCCATCCA | CGAAGGCAATTTGGGATGTA |
>MK54 | CCAGCATGCATATGGCTAGA | GGGCCAAATATTATAACGAAGG |
>MK55 | CCAGCATGCATATGGCTAGA | CGAAGGCAATTTGGGATGTA |
>MK56 | CCAGGTGAATCCAAACAGTACA | TATGCATTCGTCGTGATGGT |
>MK57 | CACCCATTAATATTGACTTCCTTGC | TTTACACCGTGGGAGGTTCT |
>MK58 | TACATCAAGCAAGCCACGAG | AGTGAGCAGGGAGCTCAAAA |
>MK59 | TACATCAAGCAAGCCACGAG | TGCATACGTCAGTAGAAAAGATGAG |
>MK60 | TGATTCCAAGACGCCTCCTA | ACGTGTACCGTTGAAGTGGA |
>MK61 | TTCAATACCCCAAACGTAACC | AGGATGGCTACGATGTCTGAA |
>MK62 | ACCCGAACCGAATTTTAACC | TTTTCTCAGACCTGATTCACCA |
>MK63 | GCGCTCACCCCTAATGTAAA | TTTTCTCAGACCTGATTCACCA |
>MK64 | ACAGCAAGGAAGGGGAAGAT | TGGGTTCAGGGATTTTATCAG |
>MK65 | CAACTATGCTACGCGTTTATTTGAC | CAGCTTATTGATGAACCTGCAA |
>MK66 | CAACCCCATTGTTAGGTAATTG | GCTCAGCAACAGCAACTGG |
>MK67 | CCGCAACAAAATCAAGTCAA | GGGTCTCTAGAAAACTTTCAACCA |
>MK68 | AAAATGGCCACAATGAGCTT | GGTCAATTTGGAGGTTCTTCTT |
>MK69 | TCTCAATCCCACAAATTAGGC | TTTTGACACCCCGTAACAACT |
>MK70 | TCTCAATCCCACAAATTAGGC | GAGAAGTCTACAAAATGGAACCTCA |
>MK71 | CGTGGCCCAACCTCAATTA | TCCATGTTTGCTGATGTAGGA |
>MK72 | ACGAAATCCTGGGAGGAAAG | TCCATGTTTGCTGATGTAGGA |
>MK73 | TGATCACACAACATGAGACCAG | TGAGCCTGATAATCCCTCCA |
>MK74 | GCGGCGGAATTTATACCTCT | ATTGGTAATTGCTGGGCATC |
>MK75 | GCGGCGGAATTTATACCTCT | AGCACCCTTACTTGCTGTGA |
>MK76 | GAGAAGTTGCCTGGTGATCG | GCGAATGGTCAGTTTTGCAC |
>MK77 | GAGAAGTTGCCTGGTGATCG | GAAATTTTGCCGCGAATG |
表4
在不同品系资源中可扩增具有SSR位点差异的引物"
品系 Strain | 编号 Code | 资源名称 Name | 可扩增具有SSR位点差异的引物 Primers with SSR site differences can be amplified |
塔罗科血橙 Tarroco Blood Orange | 11 | 塔罗科血橙1 Tarroco blood orange No.1 | mk16、mk16F/mk23F、mk23F/mk53R、mk34、mk35、mk42、mk44、mk53、mk56、mk57、mk67 |
12 | 塔罗科血橙2 Tarroco blood orange No. 2 | ||
13 | 塔罗科血橙3 Tarroco blood orange No. 3 | ||
14 | 塔罗科血橙4 Tarroco blood orange No. 4 | ||
15 | 塔罗科99 Tarroco 99 | ||
16 | 塔罗科新系 Tarroco New Line | ||
17 | 塔罗科血橙(Thermal) Thermal blood orange Tarroco | ||
五月红 Wu Yue Hong | 20 | 五月红 Wu Yue Hong | mk23F/mk53R、mk53、mk16F/mk23F、mk44、mk56、mk66、mk34、mk23F/mk53R |
21 | 五月红51-13 Wu Yue Hong 51-13 | ||
脐橙 Navel orange | 23 | 赣脐4号 Gan Qi No.4 | mk16F/mk23F、mk23F/mk53R、mk23F/mk53R、mk34、mk44、mk53、mk56、mk66 |
24 | 贺脐1号 He Qi No.1 | ||
25 | 纽荷尔 Newhell navel orange | ||
26 | 奉节晚脐 Feng Jie late navel orange | ||
27 | 桂橙1号 Gui Cheng No. 1 | ||
冰糖橙 Bing Tang Cheng | 1 | 锦秀冰糖橙 Jin Xiu Bing Tang Cheng | mk2、mk5、mk16、mk16F/mk23F、mk23、mk23F/mk53R、mk32、mk33、mk35、mk42、mk44、mk54F/mk71R、mk59、mk60、mk62、mk66 |
2 | 锦红大果冰糖橙 Jin Hong Da Guo Bing Tang Cheng | ||
3 | 锦红最红冰糖橙 Jin Hong Zui Hong Bing Tang Cheng | ||
4 | 锦玉冰糖橙 Jin Yu Bing Tang Cheng | ||
5 | 椭圆冰糖橙 Tuo Yuan Bing Tang Cheng | ||
6 | 冰糖橙仁4 Bing Tang Cheng Ren 4 | ||
7 | 冰糖橙仁5 Bing Tang Cheng Ren 5 | ||
8 | 品质特异5号冰糖橙 No. 5 Bing Tang Cheng | ||
9 | 新冰30号冰糖橙 Xin Bing No.30 Bing Tang Cheng | ||
砂糖橘 Sha Tang Ju | 29 | 砂糖橘 Sha Tang Ju | mk5、mk6F/mk26F、mk23F/mk53R、mk34、mk35、mk42、mk44、mk56、mk66 |
30 | 无核砂糖橘 Seedless Sha Tang Ju | ||
温州蜜柑 Satsuma | 37 | 宫川温州蜜柑 Miyagawa unshiu | mk2、mk5、mk6F/mk26F、mk16F/mk23F、mk23F/mk53R、mk23F/mk53R、mk32、mk34、mk35、mk42、mk56、mk59、mk62、mk66、mk76 |
38 | 大分4号温州蜜柑 Oita No.4 Wase | ||
39 | 大浦5号温州蜜柑 Ooura N0.5 Wase | ||
40 | 大分1号温州蜜柑 Oita No.4Wase | ||
沃柑芽变品种 Budding variety of Orah | 50 | 无核沃柑9号 Seedless Orah No.9 | mk2、MK5、mk11R/mk62R、mk16、mk16F/mk23F、mk23F/mk53R、mk32、mk33F/mk38F、MK35、mk42、mk44、mk46F/mk47R、mk53F/mk54R、mk56、mk59、mk62、mk64、mk66、mk6F/mk26F、MK71、mk73F/mk75R |
51 | 无核沃柑10号 Seedless Orah No.10 | ||
52 | 无核沃柑8号 Seedless Orah No.8 | ||
53 | 皱皮沃柑 Wrinkle Orah | ||
54 | 武鸣沃柑 Wu Ming Orah | ||
55 | 有核沃柑 Orah | ||
56 | 少核沃柑 Seedless Orah | ||
57 | 无核沃柑 Orri | ||
品系 Strain | 编号 Code | 资源名称 Name | 可扩增具有SSR位点差异的引物 Primers with SSR site differences can be amplified |
沃柑杂交品种 Hybrid variety of Orah | 58 | 沃柑×青皮蜜橘 Orah × Qing Pi Mi Ju | mk2、mk5、mk16、mk18、mk23F/mk53R、mk32、mk34、mk62、mk65、mk66、73F/75R |
59 | 少核沃柑×塔罗科血橙 Seedless Orah × Tarroco blood orange | ||
60 | 沃柑×甘平 Orah × Kanpei | ||
椪柑 Ponkan | 43 | 蜂洞橘椪柑 Feng Dong Ju Ponkan | mk2、mk5、mk23、mk23F/mk53R、mk32、mk34、mk35、mk44、mk46F/mk48R、mk53、mk56、mk59、mk62、mk68 |
44 | 衢州椪柑 Qu Zhou Ponkan | ||
45 | 兴春椪柑 Kousyun Ponkan | ||
46 | 早蜜椪柑 Zao Mi Ponkan | ||
47 | 黔阳无核椪柑 Qian Yang Seedless Ponkan | ||
48 | 立山64 Li Shan 64 Ponkan | ||
49 | 椪柑 Ponkan |
表5
SSR验证位点信息"
类群 Group | 染色体 CHROM | 位置 POS | 参考基因 REF | 比对基因 ALT | 变异信息 INFO |
冰糖橙Bing Tang Cheng | Scaffold_7 | 20854883 | A | AAATAATACTAACAAT | 11011 |
沃柑Orah | Scaffold_7 | 346954 | T | TAATAATAATA,TAATAATAATAATA | 11001 |
[1] |
EL ZAYAT M A S, HASSAN A H, NISHAWY E, ALI M, AMAR M H. Patterns of genetic structure and evidence of Egyptian Citrus rootstock based on informative SSR, LTR-IRAP and LTR-REMAP molecular markers. Journal of Genetic Engineering Biotechnology, 2021, 19(1): 1-14.
doi: 10.1186/s43141-020-00094-y |
[2] |
KUMAR J P T, THIRUGNANAVEL A, UPADHYAY D Y, KAMDE S A, JALAMKAR P R, MURKUTE A A. Genetic diversity and population structure of sweet orange [Citrus sinensis (L.) Osbeck] germplasm of India revealed by SSR and InDel markers. bioRxiv, 2022. doi: 10.1101/2022.01.11.475964. doi: 10.1101/2022.01.11.475964.
doi: 10.1101/2022.01.11.475964. doi: 10.1101/2022.01.11.475964. |
[3] | WOO J K, YUN S H, YI K U, PARK Y C, LEE H Y, KIM M, LEE Y, SONG K J, KIM H B. Identification of citrus varieties bred in Korea using microsatellite markers. Horticultural Science and Technology, 2020, 38(3): 374-384. |
[4] |
JIN S B, KIM H B, PARK S, KIM M J, CHOI C W, YUN S H. Identification of the ‘haryejosaeng’ mandarin cultivar by multiplex PCR-based SNP genotyping. Molecular Biology Reports, 2020, 47(11): 8385-8395. doi: 10.1007/s11033-020-05850-4.
doi: 10.1007/s11033-020-05850-4. |
[5] | 张绍阳, 孙崇德, 徐昌杰, 陈昆松. 基于S-SAP标记技术的柑橘芽变新品系青瓯柑的鉴别. 贵州农业科学, 2015, 43(8): 21-25. |
ZHANG S Y, SUN C D, XU C J, CHEN K S. Identification of green Citrus reticulate(a new bud mutation line of Citrus)based on S-SAP marker technique. Guizhou Agricultural Sciences, 201(8): 21-25. (in Chinese) | |
[6] | 张文, 胡威, 张新宇, 周敏, 蒋巧巧, 邓子牛, 李大志. 利用胚抢救技术获得沙田柚×枸橼杂交后代及其SRAP检测. 果树学报, 2013, 30(3): 386-389. |
ZHANG W, HU W, ZHANG X Y, ZHOU M, JIANG Q Q, DENG Z N, LI D Z. Acquisition of hybrids of Pummelo × Citron by using embryo rescue and their identification by SRAP molecular markers. Journal of Fruit science 2013, 30(3): 386-389. (in Chinese) | |
[7] |
TÓTH G, GÁSPÁRI Z, JURKA J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research, 2000, 10(7): 967-981. doi: 10.1101/gr.10.7.967.
doi: 10.1101/gr.10.7.967. pmid: 10899146 |
[8] |
YANG J J, ZHANG J, HAN R X, ZHANG F, MAO A J, LUO J, DONG B B, LIU H, TANG H, ZHANG J A, WEN C L. Target SSR-Seq: A novel SSR genotyping technology associate with perfect SSRs in genetic analysis of cucumber varieties. Frontiers in Plant Science, 2019, 10: 531.
doi: 10.3389/fpls.2019.00531 pmid: 31105728 |
[9] |
ŠARHANOVÁ P, PFANZELT S, BRANDT R, HIMMELBACH A, BLATTNER F R. SSR-seq: Genotyping of microsatellites using next-generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring. Ecology and Evolution, 2018, 8(22): 10817-10833. doi:10.1002/ece3.4533.
doi: 10.1002/ece3.4533 pmid: 30519409 |
[10] |
LI L, FANG Z W, ZHOU J F, CHEN H, HU Z F, GAO L F, CHEN L H, REN S, MA H Y, LU L, ZHANG W X, PENG H. An accurate and efficient method for large-scale SSR genotyping and applications. Nucleic Acids Research, 2017, 45(10): e88. doi: 10.1093/nar/gkx093.
doi: 10.1093/nar/gkx093. |
[11] |
LI H, MA Y S, PEI F Y, ZHANG H Y, LIU J C, JIANG M. Large- scale advances in SSR markers with high-throughput sequencing in Euphorbia fischeriana Steud. Electronic Journal of Biotechnology, 2021, 49: 50-55.
doi: 10.1016/j.ejbt.2020.11.004 |
[12] | 胡冬梅, 江东, 李永平, 彭磊, 李冬云, 朱延松, 杨云光. 利用Target SSR-seq技术鉴定温州蜜柑芽变材料. 中国农业科学, 2021, 54(23): 5083-5096. |
HU D M, JIANG D, LI Y P, PENG L, LI D Y, ZHU Y S, YANG Y G. Identification of bud sport mutation of Satsuma mandarin by target SSR-seq technology. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096. (in Chinese) | |
[13] | 张亚飞. 柑橘种质资源5个性状的多样性研究[D]. 重庆: 西南大学, 2020. |
ZHANG Y F. Genetic Diversity Assessment of 5 Traits in Citrus Germplasm Resources[D]. Chongqing: Southwest University, 2020. (in Chinese) | |
[14] |
WANG X W, WANG L. GMATA: An integrated software package for genome-scale SSR mining, marker development and viewing. Frontiers in Plant Science, 2016, 7: 1350.
doi: 10.3389/fpls.2016.01350 pmid: 27679641 |
[15] |
TARJAN R. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1972, 1(2): 146-160.
doi: 10.1137/0201010 |
[16] |
SHEN Z Y, QU W B, WANG W, LU Y M, WU Y H, LI Z F, HANG X Y, WANG X L, ZHAO D S, ZHANG C G. MPprimer: A program for reliable multiplex PCR primer design. BMC Bioinformatics, 2010, 11: 143. doi: 10.1186/1471-2105-11-143.
doi: 10.1186/1471-2105-11-143 pmid: 20298595 |
[17] |
CHEN S F, ZHOU Y Q, CHEN Y R, GU J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890. doi: 10.1093/bioinformatics/bty560.
doi: 10.1093/bioinformatics/bty560. |
[18] |
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760. doi:10.1093/bioinformatics/btp324.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[19] |
LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R, 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Microbiology Spectrum, 2009, 25(16): 2078-2079. doi: 10.1093/bioinformatics/btp352.
doi: 10.1093/bioinformatics/btp352. |
[20] |
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Cell Reports, 2010, 20(9): 1297-1303. doi: 10.1101/gr.107524.110.
doi: 10.1101/gr.107524.110. |
[21] |
PARADIS E, CLAUDE J, STRIMMER K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 2004, 20(2): 289-290. doi: 10.1093/bioinformatics/btg412.
doi: 10.1093/bioinformatics/btg412 pmid: 14734327 |
[22] | WICKHAM H. ggplot2. Springer New York, 2011, 3(2): 180-185. |
[23] |
FOO P C, NURUL NAJIAN A B, MUHAMAD N A, AHAMAD M, MOHAMED M, YEAN YEAN C, LIM B H. Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute for diagnostic applications: A comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR) based on Entamoeba histolytica DNA derived from faecal sample. BMC Biotechnology, 2020, 20(1): 34. doi: 10.1186/s12896-020-00629-8.
doi: 10.1186/s12896-020-00629-8. |
[24] |
TOPTAŞ B Ç, RAKOCEVIC G, KÓMÁR P, KURAL D. Comparing complex variants in family trios. Bioinformatics, 2018, 34(24): 4241-4247. doi: 10.1093/bioinformatics/bty443.
doi: 10.1093/bioinformatics/bty443 pmid: 29868720 |
[25] |
GARRISON E, KRONENBERG Z N, DAWSON E T, PEDERSEN B S, PRINS P. Vcflib and tools for processing the VCF variant call format. bioRxiv, 2021. doi: 10.1101/2021.05.21.445151.
doi: 10.1101/2021.05.21.445151. |
[26] |
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[27] |
PALANDE V, SIEGAL T, DETROJA R, GOROHOVSKI A, GLASS R, FLUEH C, KANNER A A, LAVIV Y, HAR-NOF S, LEVY- BARDA A, VIVIANA KARPUJ M, KURTZ M, PEREZ S, RAVIV SHAY D, FRENKEL-MORGENSTERN M. Detection of gene mutations and gene-gene fusions in circulating cell-free DNA of glioblastoma patients: An avenue for clinically relevant diagnostic analysis. Molecular Oncology, 2022, 16(10): 2098-2114. doi: 10.1002/1878-0261.13157.
doi: 10.1002/1878-0261.13157. |
[28] | 邓秀新, 彭抒昂. 柑橘学. 北京: 中国农业出版社, 2013. |
DENG X X, PENG S A. Citrology. Beijing: China Agriculture Press, 2013. (in Chinese) | |
[29] |
RACHLIN J, DING C M, CANTOR C, KASIF S. MuPlex: Multi-objective multiplex PCR assay design. Nucleic Acids Research, 2005, 33: W544-W547. doi: 10.1093/nar/gki377.
doi: 10.1093/nar/gki377 pmid: 15980531 |
[30] |
YAMADA T, SOMA H, MORISHITA S. PrimerStation: a highly specific multiplex genomic PCR primer design server for the human genome. Nucleic Acids Research, 2006, 34(Suppl. 2): W665-W669. doi: 10.1093/nar/gkl297.
doi: 10.1093/nar/gkl297. |
[31] |
YOU F M, HUO N, GU Y Q, LUO M C, MA Y, HANE D, LAZO G R, DVORAK J, ANDERSON O D. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics, 2008, 9: 253. doi: 10.1186/1471-2105-9-253.
doi: 10.1186/1471-2105-9-253 pmid: 18510760 |
[32] |
KAPLINSKI L, ANDRESON R, PUURAND T, REMM M. MultiPLX: automatic grouping and evaluation of PCR primers. Bioinformatics, 2004, 21(8): 1701-1702. doi: 10.1093/bioinformatics/bti219.
doi: 10.1093/bioinformatics/bti219. |
[33] | 王亚恒. 应用于靶向测序的多重PCR引物设计系统[D]. 上海: 东华大学, 2018. |
WANG Y H. A multiplex PCR primers designing system for targeted sequencing[D]. Shanghai: Donghua University, 2018. (in Chinese) |
[1] | 李菲菲, 廉雪菲, 尹韬, 常媛媛, 金燕, 马小川, 陈岳文, 叶丽, 李云松, 卢晓鹏. 柑橘果实囊衣发育与化渣性的形成[J]. 中国农业科学, 2023, 56(2): 333-344. |
[2] | 黄家权,李莉,吴丰年,郑正,邓晓玲. 携带不同原噬菌体的黄龙病菌在柑橘木虱体内的增殖及致病力[J]. 中国农业科学, 2022, 55(4): 719-728. |
[3] | 陈学森, 伊华林, 王楠, 张敏, 姜生辉, 徐娟, 毛志泉, 张宗营, 王志刚, 姜召涛, 徐月华, 李建明. 芽变选种推动世界苹果和柑橘产业优质高效发展案例解读[J]. 中国农业科学, 2022, 55(4): 755-768. |
[4] | 蒋琪琪,许建建,苏越,张琦,曹鹏,宋晨虎,李中安,宋震. 柑橘黄化花叶病毒侵染性克隆构建及应用[J]. 中国农业科学, 2022, 55(24): 4840-4850. |
[5] | 张琦,段玉,苏越,蒋琪琪,王春庆,宾羽,宋震. 基于柑橘叶斑驳病毒的表达载体构建及应用[J]. 中国农业科学, 2022, 55(22): 4398-4407. |
[6] | 肖桂华,文康,韩健,郝晨星,叶蓉春,朱亦赤,萧顺元,邓子牛,马先锋. 钙对枳生长发育及柑橘溃疡病抗性的影响[J]. 中国农业科学, 2022, 55(19): 3767-3778. |
[7] | 范子晗,罗雅尹,熊华烨,张育文,康福蓉,王昱桁,王洁,石孝均,张跃强. 酸性土壤硝化作用对柑橘铵毒害的效应[J]. 中国农业科学, 2022, 55(18): 3600-3612. |
[8] | 陈学森,王楠,张宗营,毛志泉,尹成苗. 关于果树种质资源与遗传育种若干问题的理解与思考[J]. 中国农业科学, 2022, 55(17): 3395-3410. |
[9] | 杨程,龚桂芝,彭祝春,常珍珍,易璇,洪棋斌. 基于cpInDel标记和cpSSR标记的柑橘属及近缘属植物亲缘关系[J]. 中国农业科学, 2022, 55(16): 3210-3223. |
[10] | 邹运乾,林子桢,许让伟,程运江. 替代柑橘聚乙烯薄膜单果套袋的涂膜剂研发及保鲜效果评价[J]. 中国农业科学, 2022, 55(12): 2398-2412. |
[11] | 李镇希,李文婷,黄家权,郑正,许美容,邓晓玲. 膜吸附法结合可视化环介导等温扩增技术检测柑橘黄龙病菌[J]. 中国农业科学, 2022, 55(1): 74-84. |
[12] | 段玉,许建建,马志敏,宾羽,周常勇,宋震. 柑橘叶斑驳病毒的逆转录重组酶聚合酶扩增检测[J]. 中国农业科学, 2021, 54(9): 1904-1912. |
[13] | 赵珂,郑林,杜美霞,龙俊宏,何永睿,陈善春,邹修平. 柑橘SAR及其信号转导基因CsSABP2在黄龙病菌侵染中的响应特征[J]. 中国农业科学, 2021, 54(8): 1638-1652. |
[14] | 胡冬梅,江东,李永平,彭磊,李冬云,朱延松,杨云光. 利用Target SSR-seq技术鉴定温州蜜柑芽变材料[J]. 中国农业科学, 2021, 54(23): 5083-5096. |
[15] | 张婧芸,刘语诺,王兆昊,彭爱红,陈善春,何永睿. 转CiNPR4基因柑橘抗溃疡病的机制解析[J]. 中国农业科学, 2021, 54(18): 3871-3880. |
|