中国农业科学 ›› 2022, Vol. 55 ›› Issue (9): 1800-1810.doi: 10.3864/j.issn.0578-1752.2022.09.009
王浩琳1(),马悦1,李永华1,李超1,赵明琴1,苑爱静1,邱炜红1,何刚1,石美1,*(),王朝辉1,2,*()
收稿日期:
2021-03-05
修回日期:
2021-05-06
出版日期:
2022-05-01
发布日期:
2022-05-19
通讯作者:
石美,王朝辉
作者简介:
王浩琳,E-mail: 基金资助:
WANG HaoLin1(),MA Yue1,LI YongHua1,LI Chao1,ZHAO MingQin1,YUAN AiJing1,QIU WeiHong1,HE Gang1,SHI Mei1,*(),WANG ZhaoHui1,2,*()
Received:
2021-03-05
Revised:
2021-05-06
Online:
2022-05-01
Published:
2022-05-19
Contact:
Mei SHI,ZhaoHui WANG
摘要:
【目的】通过研究我国北方八省区不同土壤有效磷水平和施磷量条件下小麦产量和籽粒锰含量的变化规律,为提高小麦产量、调控小麦锰营养水平和保障粮食安全生产提供依据。【方法】于2018—2019年在我国北方山西、陕西、甘肃、宁夏、青海、新疆、内蒙古、黑龙江8个省区的34个地点布置田间试验,设置农户施肥、监控施肥和监控无磷3个处理,研究北方八省区小麦的产量和籽粒锰含量及不同土壤有效磷水平下监控施磷及不施磷对小麦产量和籽粒锰含量的影响。【结果】在我国北方八省区,小麦产量平均为6 066 kg·hm-2,籽粒锰含量平均为42 mg·kg-1。籽粒锰含量<32 mg·kg-1的试验点占8.8%,>44 mg·kg-1的占36.8%,籽粒锰含量偏高的问题应引起注意。随土壤有效磷含量增加,小麦产量和籽粒锰含量均显著提高,有效磷含量20—30 mg·kg-1时小麦产量最高,有效磷含量>40 mg·kg-1时籽粒锰含量最高。监控施肥与农户施肥处理相比,其磷肥用量平均降低了45.4%,但两者产量分别为6 358和6 222 kg·hm-2,籽粒锰含量分别为42.8和43.6 mg·kg-1,无显著差异。不同土壤有效磷水平下,监控施肥处理的小麦产量均无显著降低;土壤有效磷<10 mg·kg-1时,不施磷肥降低了小麦籽粒锰含量,也降低了产量,而监控施肥仅降低了籽粒锰含量;其他土壤有效磷水平下,监控施肥均不降低籽粒锰含量。土壤有效锰含量亦随土壤有效磷含量的提高而升高,小麦籽粒锰含量与土壤有效锰含量呈显著正相关。【结论】为实现小麦高产和适宜的籽粒锰含量,土壤有效磷应维持在20—30 mg·kg-1;采用监控施肥技术科学优化施磷,不会降低小麦产量,但当土壤有效磷含量<10 mg·kg-1,不施磷肥虽能降低小麦籽粒锰含量,但存在小麦减产的风险。
王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810.
WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat[J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
表1
不同土壤有效磷(0—20 cm土层)水平下小麦的产量三要素"
土壤有效磷含量 Soil available P concentration (mg·kg-1) | 穗数Spike number (×104 ·hm-2) | 穗粒数Grain per spike | 千粒重1000 grain weight (g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
农户施肥FF | 监控施肥RF | 监控无磷RF-P | 平均Average | 农户施肥FF | 监控施肥RF | 监控无磷RF-P | 平均Average | 农户施肥FF | 监控施肥RF | 监控无磷RF-P | 平均Average | |
<10 | 447a | 435a | 401b | 428C | 30a | 28b | 25c | 28C | 44.3a | 44.1a | 43.9a | 44.1B |
10—20 | 442a | 428a | 398b | 424C | 33a | 35a | 35a | 34AB | 47.6ab | 45.8b | 48.5a | 47.2A |
20—30 | 484a | 487a | 495a | 488B | 35a | 36a | 36a | 36A | 47.1a | 46.1a | 47.2a | 46.8A |
30—40 | 563a | 568a | 523a | 551B | 31a | 32a | 31a | 31BC | 41.7a | 43.7a | 42.4a | 42.6B |
>40 | 742ab | 775a | 725b | 747A | 29a | 31a | 29a | 30C | 34.2b | 39.6a | 38.7a | 37.5C |
平均Average | 502a | 500a | 480b | 32a | 33a | 32a | 44.7a | 44.6a | 45.2a |
表2
不同土壤有效磷(0—20 cm土层)水平下小麦籽粒锰吸收量、地上部锰吸收量和锰收获指数"
土壤有效磷含量 Soil available P concentration (mg·kg-1) | 籽粒锰吸收量 Grain Mn uptake (g·hm-2) | 地上部锰吸收量 Mn uptake in above ground part (g·hm-2) | 锰收获指数 Mn harvest index (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
农户施肥FF | 监控施肥RF | 监控无磷RF-P | 平均Average | 农户施肥FF | 监控施肥RF | 监控无磷RF-P | 平均Average | 农户施肥FF | 监控施肥RF | 监控无磷RF-P | 平均Average | |
<10 | 252a | 242a | 215b | 236B | 542a | 514ab | 492b | 516B | 47.6a | 45.7a | 44.2a | 45.9B |
10—20 | 277a | 267a | 264a | 269AB | 548a | 527a | 516a | 530B | 52.0a | 51.9a | 51.6a | 51.8A |
20—30 | 319a | 326a | 310b | 319A | 711ab | 724a | 648b | 694A | 44.2a | 45.2a | 48.0a | 45.6B |
30—40 | 258a | 269a | 260a | 262B | 570a | 554a | 602a | 575AB | 45.3a | 50.5a | 45.2a | 47.0AB |
>40 | 221ab | 245a | 212b | 226B | 523b | 615a | 437c | 525B | 40.1a | 43.9a | 47.8a | 44.3B |
平均Average | 273a | 273a | 255b | 583a | 582a | 534b | 47.7a | 48.2a | 48.0a |
表3
不同土壤有效磷(0—20 cm土层)水平下施磷量与土壤有效锰含量"
土壤有效磷含量 Soil available P concentration ( mg·kg-1) | 施磷量P rate (kg·hm-2) | 土壤有效锰Soil DTPA-Mn concentration (mg·kg-1) | ||||
---|---|---|---|---|---|---|
农户施肥FF | 监控施肥RF | 农户施肥FF | 监控施肥RF | 监控无磷RF-P | 平均Average | |
<10 | 110a | 61b | 8.5a | 7.9a | 7.6a | 8.0B |
10—20 | 134a | 80b | 6.5a | 6.6a | 6.8a | 6.6B |
20—30 | 146a | 70b | 7.9a | 7.4a | 7.5a | 7.6B |
30—40 | 149a | 68b | 9.3a | 10.0a | 10.4a | 9.9B |
>40 | 114a | 68b | 39.0a | 35.5a | 38.1a | 37.5A |
平均Average | 130a | 71b | 11.3a | 10.7a | 12.1a | |
与小麦籽粒锰含量的相关系数 Correlation coefficient with wheat grain Mn concentration | 0.940* | 0.918* | 0.817 |
[1] |
BROOKS A, WOO K C, WONG S C. Effects of phosphorus nutrition on the response of photosynthesis to CO2 and O2, activation of ribulose bisphosphate carboxylase and amounts of ribulose bisphosphate and 3-phosphoglycerate in spinach leaves. Photosynthesis Research, 1988, 15(2): 133-141. doi: 10.1007/BF00035257.
doi: 10.1007/BF00035257 |
[2] |
KHAN A, LU G Y, AYAZ M, ZHANG H T, WANG R J, LV F L, YANG X Y, SUN B H, ZHANG S L. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agriculture, Ecosystems & Environment, 2018, 256: 1-11. doi: 10.1016/j.agee.2018.01.006.
doi: 10.1016/j.agee.2018.01.006 |
[3] |
曹寒冰, 王朝辉, 赵护兵, 马小龙, 佘旭, 张璐, 蒲岳建, 杨珍珍, 吕辉, 师渊超, 杜明叶. 基于产量的渭北旱地小麦施肥评价及减肥潜力分析. 中国农业科学, 2017, 50(14): 2758-2768. doi: 10.3864/j.issn.0578-1752.2017.14.012.
doi: 10.3864/j.issn.0578-1752.2017.14.012 |
CAO H B, WANG Z H, ZHAO H B, MA X L, SHE X, ZHANG L, PU Y J, YANG Z Z, LÜ H, SHI Y C, DU M Y. Yield based evaluation on fertilizer application and analysis of its reduction potential in Weibei dryland wheat production. Scientia Agricultura Sinica, 2017, 50(14): 2758-2768. doi: 10.3864/j.issn.0578-1752.2017.14.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.012 |
|
[4] | 张伟. 供磷水平对小麦玉米锌吸收、累积的影响及其作用机制[D]. 北京: 中国农业大学, 2017. |
ZHANG W. The mechanisms of zinc uptake and accumulation in wheat and maize as affected by phosphorus levels[D]. Beijing: China Agricultural University, 2017. (in Chinese) | |
[5] |
ULLAH A, FAROOQ M, REHMAN A, ARSHAD M S, SHOUKAT H, NADEEM A, NAWAZ A, WAKEEL A, NADEEM F. Manganese nutrition improves the productivity and grain biofortification of bread wheat in alkaline calcareous soil. Experimental Agriculture, 2018, 54(5): 744-754. doi: 10.1017/s0014479717000369.
doi: 10.1017/s0014479717000369 |
[6] |
DISMUKES G C. The metal centers of the photosynthetic oxygen- evolving complex. Photochemistry and Photobiology, 1986, 43(1): 99-115. doi: 10.1111/j.1751-1097.1986.tb05598.x.
doi: 10.1111/j.1751-1097.1986.tb05598.x. |
[7] | ROBSON A D. Manganese in Soils and Plants. Glen Osmond: Kluwer Academic Publishers, 1988: 329-333. |
[8] |
PUBLICATIONS W. Book review: Trace elements in human nutrition and health. Nutrition and Health, 1996, 11: 133-134. doi: 10.1177/026010609601100206.
doi: 10.1177/026010609601100206 |
[9] |
KHAN K, WASSERMAN G A, LIU X H, AHMED E, PARVEZ F, SLAVKOVICH V, LEVY D, MEY J, VAN GEEN A, GRAZIANO J H, FACTOR-LITVAK P. Manganese exposure from drinking water and children's academic achievement. Neuro Toxicology, 2012, 33(1): 91-97. doi: 10.1016/j.neuro.2011.12.002.
doi: 10.1016/j.neuro.2011.12.002 |
[10] |
BOUCHARD M F, SAUVÉ S, BARBEAU B, LEGRAND M, BRODEUR M È, BOUFFARD T, LIMOGES E, BELLINGER D C, MERGLER D. Intellectual impairment in school-age children exposed to manganese from drinking water. Environmental Health Perspectives, 2011, 119(1): 138-143. doi: 10.1289/ehp.1002321.
doi: 10.1289/ehp.1002321 |
[11] |
BOUCHARD M, LAFOREST F, VANDELAC L, BELLINGER D, MERGLER D. Hair manganese and hyperactive behaviors: Pilot study of school-age children exposed through tap water. Environmental Health Perspectives, 2007, 115(1): 122-127. doi: 10.1289/ehp.9504.
doi: 10.1289/ehp.9504 |
[12] |
YE Q, PARK J E, GUGNANI K, BETHARIA S, PINO-FIGUEROA A, KIM J. Influence of iron metabolism on manganese transport and toxicity. Metallomics, 2017, 9(8): 1028-1046. doi: 10.1039/c7mt00079k.
doi: 10.1039/c7mt00079k |
[13] | 中国营养学会. 中国居民膳食营养素参考摄入量. 2013版. 北京: 科学出版社, 2014. |
Chinese Nutrition Society. Chinese Dietary Reference Intakes. 2013 ed. Beijing: Science Press, 2014. (in Chinese) | |
[14] | 国家卫生计生委. 中国居民营养与慢性病状况报告-2015年 北京: 人民卫生出版社, 2015. |
National Health and Family Planning Commission Disease Prevention and Control Bureau. Report on the Status of Nutrition and Chronic Diseases of Chinese Residents (2015). Beijing: People's Medical Publishing House, 2015. (in Chinese) | |
[15] |
SHI M, HOU S B, SUN Y Y, DANG H Y, SONG Q Y, JIANG L G, CAO W, WANG H L, HE X H, WANG Z H. Regional wheat grain manganese and its potential risks affected by soil pH and precipitation. Journal of Cleaner Production, 2020, 264: 121677. doi: 10.1016/j.jclepro.2020.121677.
doi: 10.1016/j.jclepro.2020.121677 |
[16] |
冯媛媛, 申艳, 徐明岗, 田应兵, 任凤铃, 段英华. 施磷量与小麦产量的关系及其对土壤、气候因素的响应. 植物营养与肥料学报, 2019, 25(4): 683-691. doi: 10.11674/zwyf.18171.
doi: 10.11674/zwyf.18171 |
FENG Y Y, SHEN Y, XU M G, TIAN Y B, REN F L, DUAN Y H. Relationship between phosphorus application amount and grain yield of wheat and its response to soil and climate factors. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 683-691. doi: 10.11674/zwyf. 18171. (in Chinese)
doi: 10.11674/zwyf.18171 |
|
[17] | 曲浩彬. 施磷量对不同穗型小麦分蘗发生及产量的影响[D]. 泰安: 山东农业大学, 2020. |
QU H B. Effects of phosphorus application on tillering occurrence and yield of wheat with different panicle types[D]. Taian: Shandong Agricultural University, 2020. (in Chinese) | |
[18] |
李茹, 单燕, 李水利, 林文, 刘芬, 同延安. 陕西麦田土壤肥力与施肥现状评估. 麦类作物学报, 2015, 35(1): 105-110. doi: 10.7606/j.issn.1009-1041.2015.01.16.
doi: 10.7606/j.issn.1009-1041.2015.01.16 |
LI R, SHAN Y, LI S L, LIN W, LIU F, TONG Y N. Analysis of soil fertility and fertilization of wheat field in Shaanxi. Journal of Triticeae Crops, 2015, 35(1): 105-110. doi: 10.7606/j.issn.1009-1041.2015.01.16. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2015.01.16 |
|
[19] | RAHIM A, RANJHA A M, MOMIN R, WARAICH E. Effect of phosphorus application and irrigation scheduling on wheat yield and phosphorus use efficiency. Soil and Environment, 2010, 29(1): 15-22. |
[20] |
赵荣芳, 邹春琴, 张福锁. 长期施用磷肥对冬小麦根际磷、锌有效性及其作物磷锌营养的影响. 植物营养与肥料学报, 2007, 13(3): 368-372. doi: 10.3321/j.issn:1008-505X.2007.03.003.
doi: 10.3321/j.issn:1008-505X.2007.03.003 |
ZHAO R F, ZOU C Q, ZHANG F S. Effects of long-term P fertilization on P and Zn availability in winter wheat rhizoshpere and their nutrition. Plant Nutrition and Fertilizer Science, 2007, 13(3): 368-372. doi: 10.3321/j.issn:1008-505X.2007.03.003. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2007.03.003 |
|
[21] |
BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1/2): 27-37. doi: 10.1007/s11104-013-1696-y.
doi: 10.1007/s11104-013-1696-y |
[22] |
惠晓丽, 王朝辉, 罗来超, 马清霞, 王森, 戴健, 靳静静. 长期施用氮磷肥对旱地冬小麦籽粒产量和锌含量的影响. 中国农业科学, 2017, 50(16): 3175-3185. doi: 10.3864/j.issn.0578-1752.2017.16.012.
doi: 10.3864/j.issn.0578-1752.2017.16.012 |
HUI X L, WANG Z H, LUO L C, MA Q X, WANG S, DAI J, JIN J J. Winter wheat grain yield and Zn concentration affected by long-term N and P application in dryland. Scientia Agricultura Sinica, 2017, 50(16): 3175-3185. doi: 10.3864/j.issn.0578-1752.2017.16.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.16.012 |
|
[23] |
黄德明, 徐秋明, 李亚星, 姚志东. 土壤氮、磷营养过剩对微量元素锌、锰、铁、铜有效性及植株中含量的影响. 植物营养与肥料学报, 2007, 13(5): 966-970. doi: 10.3321/j.issn:1008-505x. 2007.05.032.
doi: 10.3321/j.issn:1008-505x. 2007.05.032 |
HUANG D M, XU Q M, LI Y X, YAO Z D. Influence of soil N and P excess on the availability of Zn, Mn, Fe, Cu and there content in plant. Plant Nutrition and Fertilizer Science, 2007, 13(5): 966-970. doi: 10.3321/j.issn:1008-505x.2007.05.032. (in Chinese)
doi: 10.3321/j.issn:1008-505x. 2007.05.032 |
|
[24] |
ZHU Y G, SMITH F A, SMITH S E. Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand culture. Australian Journal of Agricultural Research, 2002, 53(2): 211. doi: 10.1071/ar01085.
doi: 10.1071/ar01085 |
[25] |
MARSH K B, PETERSON L A, MCCOWN B H. A microculture method for assessing nutrient uptake II. The effect of temperature on manganese uptake and toxicity in potato shoots. Journal of Plant Nutrition, 1989, 12(2): 219-232. doi: 10.1080/01904168909363947.
doi: 10.1080/01904168909363947 |
[26] | 吴照辉, 贺立源, 严昶, 门玉英. 低磷胁迫对水稻铁、锰吸收和积累的影响. 应用与环境生物学报, 2010, 16(2):185-191. |
WU Z H, HE L Y, YAN C, MEN Y Y. Effect of low phosphorus stress on Fe and Mn absorption and accumulation by rice shoots. Chinese Journal of Applied & Environmental Biology, 2010, 16(2):185-191. (in Chinese) | |
[27] |
NEILSEN D, NEILSEN G H, SINCLAIR A H, LINEHAN D J. Soil phosphorus status, pH and the manganese nutrition of wheat. Plant and Soil, 1992, 145(1): 45-50. doi: 10.1007/BF00009540.
doi: 10.1007/BF00009540 |
[28] |
SARKAR D, PANDEY S K, SUD K C, CHANEMOUGASOUNDHARAM A. In vitro characterization of manganese toxicity in relation to phosphorus nutrition in potato (Solanum tuberosum L.). Plant Science, 2004, 167(5): 977-986. doi: 10.1016/j.plantsci.2004.05.022.
doi: 10.1016/j.plantsci.2004.05.022 |
[29] |
NOGUEIRA M A, NEHLS U, HAMPP R, PORALLA K, CARDOSO E J B N. Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant and Soil, 2007, 298(1/2): 273-284. doi: 10.1007/s11104-007-9379-1.
doi: 10.1007/s11104-007-9379-1 |
[30] |
曹寒冰, 王朝辉, 师渊超, 杜明叶, 雷小青, 张文忠, 张璐, 蒲岳建. 渭北旱地冬小麦监控施氮技术的优化. 中国农业科学, 2014, 47(19): 3826-3838. doi: 10.3864/j.issn.0578-1752.2014.19.011.
doi: 10.3864/j.issn.0578-1752.2014.19.011 |
CAO H B, WANG Z H, SHI Y C, DU M Y, LEI X Q, ZHANG W Z, ZHANG L, PU Y J. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei dryland. Scientia Agricultura Sinica, 2014, 47(19): 3826-3838. doi: 10.3864/j.issn.0578-1752.2014.19.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.19.011 |
|
[31] |
戴健, 王朝辉, 李强, 李孟华, 李富翠. 氮肥用量对旱地冬小麦产量及夏闲期土壤硝态氮变化的影响. 土壤学报, 2013, 50(5): 956-965. doi: 10.11766/trxb201212100507.
doi: 10.11766/trxb201212100507 |
DAI J, WANG Z H, LI Q, LI M H, LI F C. Effects of nitrogen application rate on winter wheat yield and soil nitrate nitrogen during summer fallow season on dryland. Acta Pedologica Sinica, 2013, 50(5): 956-965. doi: 10.11766/trxb201212100507. (in Chinese)
doi: 10.11766/trxb201212100507 |
|
[32] |
黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51(14): 2722-2734. doi: 10.3864/j.issn.0578-1752.2018.14.010.
doi: 10.3864/j.issn.0578-1752.2018.14.010 |
HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica, 2018, 51(14): 2722-2734. doi: 10.3864/j.issn.0578-1752.2018.14.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.14.010 |
|
[33] |
黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53(1): 81-93. doi: 10.3864/j.issn.0578-1752.2020.01.008.
doi: 10.3864/j.issn.0578-1752.2020.01.008 |
HUANG N, WANG Z H, WANG L, MA Q X, ZHANG Y Y, ZHANG X X, WANG R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(1): 81-93. doi: 10.3864/j.issn.0578-1752.2020.01.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.01.008 |
|
[34] | 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese) | |
[35] | 何刚, 王朝辉, 李富翠, 戴健, 李强, 薛澄, 曹寒冰, 王森, 刘慧, 罗来超, 黄明. 地表覆盖对旱地小麦氮磷钾需求及生理效率的影响. 中国农业科学, 2016, 49(9):1657-1671. |
HE G, WANG Z H, LI F C, DAI J, LI Q, XUE C, CAO H B, WANG S, LIU H, LUO L C, HUANG M. Nitrogen, phosphorus and potassium requirement and their physiological efficiency for winter wheat affected by soil surface managements in dryland. Scientia Agricultura Sinica, 2016, 49(9):1657-1671. (in Chinese) | |
[36] |
XI B, ZHAI L M, LIU J, LIU S, WANG H Y, LUO C Y, REN T Z, LIU H B. Long-term phosphorus accumulation and agronomic and enviromental critical phosphorus levels in Haplic Luvisol soil. Northern China. Journal of Integrative Agriculture, 2016, 15(1): 200-208. doi: 10.1016/S2095-3119(14)60947-3.
doi: 10.1016/S2095-3119(14)60947-3 |
[37] |
郭斗斗, 黄绍敏, 张水清, 张珂珂, 宋晓. 潮土小麦和玉米Olsen-P农学阈值及其差异分析. 植物营养与肥料学报, 2017, 23(5): 1184-1190. doi: 10.11674/zwyf.17043.
doi: 10.11674/zwyf.17043 |
GUO D D, HUANG S M, ZHANG S Q, ZHANG K K, SONG X. Threshold values of soil Olsen-P for maize and wheat in fluvo-aquic soil. Journal of Plant Nutrition and Fertilizer, 2017, 23(5): 1184-1190. doi: 10.11674/zwyf.17043. (in Chinese)
doi: 10.11674/zwyf.17043 |
|
[38] |
SHI L L, SHEN M X, LU C Y, WANG H H, ZHOU X W, JIN M J, WU T D. Soil phosphorus dynamic, balance and critical P values in long-term fertilization experiment in Taihu Lake region, China. Journal of Integrative Agriculture, 2015, 14(12): 2446-2455. doi: 10.1016/S2095-3119(15)61183-2.
doi: 10.1016/S2095-3119(15)61183-2 |
[39] | ADAMS F. The Role of Phosphorus in Agriculture. Amsterdam: Elsevier, 1980: 655-680. |
[40] |
张淑香, 王小彬, 金柯, 李秀英, 周勇, 姚宇卿. 干旱条件下氮、磷水平对土壤锌、铜、锰、铁有效性的影响. 植物营养与肥料学报, 2001, 7(4): 391-396. doi: 10.3321/j.issn:1008-505X.2001.04.006.
doi: 10.3321/j.issn:1008-505X.2001.04.006 |
ZHANG S X, WANG X B, JIN K, LI X Y, ZHOU Y, YAO Y Q. Effect of different N and P levels on availability of zinc, copper, manganese and iron under arid conditions. Plant Nutrition and Fertilizer Science, 2001, 7(4): 391-396. doi: 10.3321/j.issn: 1008-505X.2001.04.006. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2001.04.006 |
|
[41] |
CHASSOT A, RICHNER W. Root characteristics and phosphorus uptake of maize seedlings in a bilayered soil. Agronomy Journal, 2002, 94(1): 118. doi: 10.2134/agronj2002.0118.
doi: 10.2134/agronj2002.0118 |
[42] | 廖红, 严小龙. 菜豆根构型对低磷胁迫的适应性变化及基因型差异. 植物学报, 2000, 42(2): 158-163. |
LIAO H, YAN X L. Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Botanica Sinica, 2000, 42(2): 158-163. (in Chinese) | |
[43] |
金剑, 王光华, 刘晓冰, 陈雪丽, 李兴国. 不同施磷量对大豆苗期根系形态性状的影响. 大豆科学, 2006, 25(4): 360-364. doi: 10.3969/j.issn.1000-9841.2006.04.005.
doi: 10.3969/j.issn.1000-9841.2006.04.005 |
JIN J, WANG G H, LIU X B, CHEN X L, LI X G. Effect of different phosphorus regimes on root morphological characteristics of soybean seedling. Soybean Science, 2006, 25(4): 360-364. doi: 10.3969/j.issn.1000-9841.2006.04.005. (in Chinese)
doi: 10.3969/j.issn.1000-9841.2006.04.005 |
|
[44] |
TANG X, MA Y B, HAO X Y, LI X Y, LI J M, HUANG S M, YANG X Y. Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant and Soil, 2009, 323(1/2): 143-151. doi: 10.1007/s11104-009-9919-y.
doi: 10.1007/s11104-009-9919-y |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[4] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[5] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[6] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[7] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[8] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[9] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[10] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[11] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[12] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[13] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[14] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[15] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
|