Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

MicroRNA-370-5p inhibits pigmentation and cell proliferation by downregulating mitogen-activated protein kinase kinase kinase 8 expression in sheep melanocytes

JI Kai-yuan, WEN Ru-jun, WANG Zheng-zhou, TIAN Qian-qian, ZHANG Wei, ZHANG Yun-hai
2023, 22 (4): 1131-1141.   DOI: 10.1016/j.jia.2023.02.018
Abstract224)      PDF in ScienceDirect      

In mammals, microRNAs (miRNAs) play key roles in multiple biological processes by regulating the expression of target genes.  Studies have found that the levels of miR-370-5p expression differ significantly in the skins of sheep with different hair colors; however, its function remains unclear.  In this study, we investigated the roles of miR-370-5p in sheep melanocytes and found that the overexpression of miR-370-5p significantly inhibited cell proliferation (P<0.01), tyrosinase activity (P=0.001) and significantly reduced (P<0.001) melanin production.  Functional prediction revealed that the 3´-untranslated region (UTR) of MAP3K8 has a putative miR-370-5p binding site, and the interaction between these two molecules was confirmed using luciferase reporter assays.  In situ hybridization assays revealed that MAP3K8 is expressed in the cytoplasm of melanocytes.  The results of quantitative RT-PCR and Western blotting analyses revealed that overexpression of miR-370-5p in melanocytes significantly inhibits (P<0.01) MAP3K8 expression via direct targeting of its 3´ UTR.  Inhibition of MAP3K8 expression by siRNA-MAP3K8 transfection induced a significant inhibition (P<0.01) of melanocyte proliferation and significant reduction (P<0.001) in melanin production, which is consistent with our observations for miR-370-5p.  Target gene rescue experiments indicated that the expression of MAP3K8 in melanocytes co-transfected with miR-370-5p and MAP3K8-cDNA (containing sites for the targeted binding to miR-370-5p) was significantly rescued (P≤0.001), which subsequently promoted significant increases in cell proliferation (P<0.001) and melanin production (P<0.01).  Collectively, these findings indicate that miR-370-5p plays a functional role in inhibiting sheep melanocyte proliferation and melanogenesis by downregulating the expression of MAP3K8.  

Reference | Related Articles | Metrics
A universal probe for simultaneous detection of six pospiviroids and natural infection of potato spindle tuber viroid (PSTVd) in tomato in China
ZHANG Yu-hong, LI Zhi-xin, DU Ya-jie, LI Shi-fang, ZHANG Zhi-xiang
2023, 22 (3): 790-798.   DOI: 10.1016/j.jia.2022.08.119
Abstract332)      PDF in ScienceDirect      

Several viroids in the genus Pospiviroid can infect tomato (Solanum lycopersicum) and cause severe diseases, posing a serious threat to tomato production.  For simultaneous detection of six tomato-infecting pospiviroids - columnea latent viroid (CLVd), pepper chat fruit viroid (PCFVd), potato spindle tuber viroid (PSTVd), tomato apical stunt viroid (TASVd), tomato chlorotic dwarf viroid (TCDVd), and tomato planta macho viroid (TPMVd), we developed a universal probe based on a highly conserved 61 nt long sequence shared among them.  Compared with their specific probes, the universal probe has a similar, though slightly reduced, detection sensitivity and has the advantages of simple and cost-effective preparation and simultaneous detection of the six pospiviroids.  In addition, the universal probe was used in dot-blot hybridization assays for a large-scale survey of viroid(s) in tomato plantings in China.  Only PSTVd was detected in a few greenhouse-planted tomato plants.  Sequence analysis revealed that these tomato PSTVd isolates may have been introduced from tomato seeds imported from abroad. 

Reference | Related Articles | Metrics

PpMAPK6 regulates peach bud endodormancy release through interactions with PpDAM6

ZHANG Yu-zheng, XU Chen, LU Wen-li, WANG Xiao-zhe, WANG Ning, MENG Xiang-guang, FANG Yu-hui, TAN Qiu-ping, CHEN Xiu-de, FU Xi-ling, LI Ling
2023, 22 (1): 139-148.   DOI: 10.1016/j.jia.2022.09.010
Abstract205)      PDF in ScienceDirect      

The MADS-box (DAM) gene PpDAM6, which is related to dormancy, plays a key role in bud endodormancy release, and the expression of PpDAM6 decreases during endodormancy release.  However, the interaction network that governs its regulation of the endodormancy release of flower buds in peach remains unclear.  In this study, we used yeast two-hybrid (Y2H) assays to identify a mitogen-activated protein kinase, PpMAPK6, that interacts with PpDAM6 in a peach dormancy-associated SSHcDNA library.  PpMAPK6 is primarily located in the nucleus, and Y2H and bimolecular fluorescence complementation (BiFC) assays verified that PpMAPK6 interacts with PpDAM6 by binding to the MADS-box domain of PpDAM6.  Quantitative real-time PCR (qRT-PCR) analysis showed that the expression of PpMAPK6 was opposite that of PpDAM6 in the endodormancy release of three cultivars with different chilling requirements (Prunus persica ‘Chunjie’, Prunus persica var. nectarina ‘Zhongyou 5’, Prunus persica ‘Qingzhou peach’).  In addition, abscisic acid (ABA) inhibited the expression of PpMAPK6 and promoted the expression of PpDAM6 in flower buds.  The results indicated that PpMAPK6 might phosphorylate PpDAM6 to accelerate its degradation by interacting with PpDAM6.  The expression of PpMAPK6 increased with decreasing ABA content during endodormancy release in peach flower buds, which in turn decreased the expression of PpDAM6 and promoted endodormancy release.

Reference | Related Articles | Metrics
Plant-based meat substitutes by high-moisture extrusion: Visualizing the whole process in data systematically from raw material to the products
ZHANG Jin-chuang, MENG Zhen, CHENG Qiong-ling, LI Qi-zhai, ZHANG Yu-jie, LIU Li, SHI Ai-min, WANG Qiang
2022, 21 (8): 2435-2444.   DOI: 10.1016/S2095-3119(21)63892-3
Abstract190)      PDF in ScienceDirect      

High-moisture extrusion technology should be considered one of the best choices for producing plant-based meat substitutes with the rich fibrous structure offered by real animal meat products.  Unfortunately, the extrusion process has been seen as a “black box” with limited information about what occurs inside, causing serious obstacles in developing meat substitutes.  This study designed a high-moisture extrusion process and developed 10 new plant-based meat substitutes comparable to the fibrous structure of real animal meat.  The study used the Feature-Augmented Principal Component Analysis (FA-PCA) method to visualize and understand the whole extrusion process in three ways systematically and accurately.  It established six sets of mathematical models of the high-moisture extrusion process based on 8 000 pieces of data, including five types of parameters.  The FA-PCA method improved the R2 values significantly compared with the PCA method.  The Way 3 was the best to predict product quality (Z), demonstrating that the gradually molecular conformational changes (Yn´) were critical in controlling the final quality of the plant-based meat substitutes.  Moreover, the first visualization platform software for the high-moisture extrusion process has been established to clearly show the “black box” by combining the virtual simulation technology.  Through the software, some practice work such as equipment installation, parameter adjustment, equipment disassembly, and data prediction can be easily achieved.

Reference | Related Articles | Metrics
Weighted gene co-expression network analysis identifies potential regulators in response to Salmonella Enteritidis challenge in the reproductive tract of laying ducks
ZHANG Yu, LUO Shu-wen, HOU Li-e, GU Tian-tian, ZHU Guo-qiang, Wanwipa VONGSANGNAK, XU Qi, CHEN Guo-hong
2022, 21 (8): 2384-2398.   DOI: 10.1016/S2095-3119(21)63888-1
Abstract222)      PDF in ScienceDirect      

Salmonella Enteritidis (SE) is a zoonotic and vertically transmitted pathogen, often colonized in the reproductive tract of adult poultry, which can result in direct contamination of eggs and threaten human health.  Previous studies have revealed that some pattern recognition receptors and resistance genes were involved in regulating immune responses to SE invasion in birds.  However, the role of these immune response genes was not independent, and the interactions among the genes remained to be further investigated.  In this study, SE burden and colonization were determined in reproductive tissue after the ducks were SE-infected, and RNA-sequencing was performed to construct co-expression networks by weighted gene co-expression network analysis (WGCNA).  The result showed that SE could be isolated from 22% of infected-birds in any segment of the reproductive tract and the SE was readily colonized in the stroma, small follicle, isthmus, and vagina of the reproductive tracts in morbid ducks.  The top central, highly connected genes were subsequently identified three specific modules in the above four tissues at the defined cut-offs (P<0.01), including 60 new candidate regulators and 125 transcription factors.  Moreover, those 185 differentially expressed genes (DEGs) in these modules were co-expressed.  Moreover, the hub genes (TRAF3, CXCR4 and IL13RA1) were identified to act with many other genes through immune response pathways including NF-kappaB, Toll-like receptor, steroid biosynthesis, and p53 signaling pathways.  These data provide references that will understand the immune regulatory relationships during SE infection, but also assist in the breeding of SE-resistant lines through potential biomarkers.

Reference | Related Articles | Metrics
Identification of Heterodera schachtii on sugar beet in Xinjiang Uygur Autonomous Region of China
PENG Huan, LIU Hui, GAO Li, JIANG Ru, LI Guang-kuo, GAO Hai-feng, Wu Wei, WANG Jun, Zhang Yu, HUANG Wen-kun, KONG Ling-an, PENG De-liang
2022, 21 (6): 1694-1702.   DOI: 10.1016/S2095-3119(21)63797-8
Abstract258)      PDF in ScienceDirect      
The sugar beet cyst nematode, Heterodera schachtii, is a major parasite of sugar beet which has been recognized and listed as a quarantine nematode in China and more than 20 countries and regions worldwide.  A survey for important nematodes was undertaken in the sugar beet planting area of China during 2015–2018, and numerous cysts were collected from sugar beet fields in Xinyuan County, Xinjiang Uygur Autonomous Region of China.  The observations of morphological and morphometric characteristics revealed that cysts, vulval cones and second-stage juveniles of the Xinjiang population were in the same range of each other and within those of other reported H. schachtii populations.  Molecular analysis of rDNA-ITS, 28S-D2/D3 and mtDNA cytochrome c oxidase subunit 1 (COI) gene sequences suggested that the Xinjiang population clustered in a branch with those foreign populations, and the sequence similarity was as high as 99.81–100%.  Moreover, this result was confirmed by PCR assay with species-specific primer SHF6 and rDNA2 of H. schachtii, and the pathogenicity test confirmed successful Xinjiang population reproduction in both plant hosts.  In conclusion, based on morphological and molecular characterization, this study confirmed that the cyst nematode population collected from sugar beet fields in Xinjiang is H. schachtii.  As far as we know, this is the first report of H. schachtii on sugar beets in Xinjiang, China.
Reference | Related Articles | Metrics
miR-99a-5p inhibits target gene FZD5 expression and steroid hormone secretion from goat ovarian granulosa cells
ZHU Lu, JING Jing, QIN Shuai-qi, LU Jia-ni, ZHU Cui-yun, ZHENG Qi, LIU Ya, FANG Fu-gui, LI Yun-sheng, ZHANG Yun-hai, LING Ying-hui
2022, 21 (4): 1137-1145.   DOI: 10.1016/S2095-3119(21)63766-8
Abstract188)      PDF in ScienceDirect      
MicroRNA (miRNA) has vital regulatory effects on the proliferation, differentiation and secretion of ovarian granulosa cells, but the role of miR-99a-5p in goat ovarian granulosa cells (GCs) is unclear.  Both miR-99a-5p and Frizzled-5 (FZD5) were found to be expressed in GCs in goat ovaries via fluorescence in situ hybridization and immunohistochemistry, respectively, and FZD5 was verified (P<0.001) as a target gene of miR-99a-5p by double luciferase reporter gene experiments.  Furthermore, FZD5 mRNA and protein expression were both found to be regulated (P<0.05) by miR-99a-5p in GCs.  Moreover, the overexpression of miR-99a-5p or knockdown of FZD5 suppressed (P<0.05) estradiol and progesterone secretion from the GCs, as determined by ELISA.  In summary, miR-99a-5p inhibits target gene FZD5 expression and estradiol and progesterone synthesis in GCs.  Our study thus provides seminal data and new insights into the regulatory mechanisms of follicular development in the goat and other animals.
Reference | Related Articles | Metrics
Kiwifruit (Actinidia chinensis ‘Hongyang’) cytosolic ascorbate peroxidases (AcAPX1 and AcAPX2) enhance salinity tolerance in Arabidopsis thaliana
GUO Xiu-hong, HE Yan, ZHANG Yu, WANG Yi, HUANG Sheng-xiong, LIU Yong-sheng, LI Wei
2022, 21 (4): 1058-1070.   DOI: 10.1016/S2095-3119(21)63652-3
Abstract144)      PDF in ScienceDirect      
Ascorbate peroxidase (APX) plays a key role in scavenging reactive oxygen species (ROS) in higher plants.  However, there is very little information available on the APXs in kiwifruit (Actinidia), which is an economically and nutritionally important horticultural crop with exceptionally high ascorbic acid (AsA) accumulation.  This study aims to identify and characterize two cytosolic APX genes (AcAPX1 and AcAPX2) derived from A. chinensis ‘Hongyang’.  The constitutive expression pattern was determined for both AcAPX1 and AcAPX2, and showed relatively higher expression abundances of AcAPX1 in leaf and AcAPX2 in root.  Transcript levels of AcAPX1 and AcAPX2 were increased in kiwifruit roots treated with NaCl.  Subcellular localization assays using GFP-fusion proteins in Arabidopsis protoplasts showed that both AcAPX1 and AcAPX2 are targeted to the cytosol.  Recombinant AcAPX1 or AcAPX2 proteins were successfully expressed in the prokaryotic expression system and their individual ascorbate peroxidase activities were determined.  Finally, constitutive over-expression of AcAPX1 or AcAPX2 could dramatically increase total AsA, glutathione level and salinity tolerance under NaCl stress in Arabidopsis thaliana.  Our findings revealed that cytosolic AcAPX1/2 may play an important protective role in the responses to unfavorable environmental stimuli in kiwifruit.
Reference | Related Articles | Metrics
Systematical regulation involved in heterogeneous photosynthetic characteristics of individual leaf in pima cotton
ZHANG Yu-jie, HAN Ji-mei, LEI Zhang-ying, MENG Hao-feng, ZHANG Wang-feng, ZHANG Ya-li
2022, 21 (4): 995-1003.   DOI: 10.1016/S2095-3119(20)63565-1
Abstract138)      PDF in ScienceDirect      
Light heterogeneity leads to anatomically and physiologically heterogeneous features in leaves.  However, little attention has been paid to the effects of nonuniform illumination on the anatomical and photosynthetic performance on both sides along the leaf main vein.  This study explored such effects by combining in situ determination in the field with shading simulation in the phytotron, on pima cotton that has cupping leaves.  Photosynthetic characteristics and morphological structures were measured in the field on both sides along the main vein of eastward, westward, southward, and northward leaves.  The results showed that the difference in photosynthetic capacity between the two sides along the main vein in different directions was closely related to the daily photo irridiance (DPI).  This result indicates that the photosynthetic heterogeneity between the two sides is related to their intercepted light energy.  The conclusion was further verified by the shading simulation experiments.  Photosynthetic capacity and leaf thickness of the unshaded sides of leaves in the half-shaded treatment decreased, compared to those in the unshaded treatment.  Therefore, it is conjectured that the development of  photosynthetic characteristics on one side is systematically regulated by that on the other side.  The study provides theoretical guidance on accessing the feasibility of sampling and directional planting.   

Reference | Related Articles | Metrics
Expression profiles and functional prediction of ionotropic receptors in Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae)
ZHANG Yu, YANG Bin, YU Jie, PANG Bao-ping, WANG Gui-rong
2022, 21 (2): 474-485.   DOI: 10.1016/S2095-3119(20)63427-X
Abstract181)      PDF in ScienceDirect      
Genes involved in chemosensation are essential for odorant-mediated insect behaviors.  Odorant receptors (ORs) bind and respond to pheromones and plant volatiles, regulating insect behaviors such as mating and host-plant selection, while ionotropic receptors (IRs), which are present at lower levels in insects than ORs, influence ion channels, especially in agricultural pests.  Asian corn borer, Ostrinia furnacalis, is the main pest of maize that causes huge economic losses in Asia.  Twenty-one OfurIRs have been identified, but none has been characterized.  In this study, tissue-specific expression profiling, phylogenetic analysis, and electroantennography (EAG) analysis were applied to characterize the evolution, expression, and the potential function of OfurIRs.  It was found that 20 OfurIRs were highly expressed in the antennae, except for OfurIR75p3, whereas 10 and nine OfurIRs were highly expressed in the proboscis and genitalia, respectively, indicating that these OfurIRs were functionally associated with feeding and oviposition.  EAG results showed that seven acids elicited responses in the antennae of O. furnacalis and that 2-oxopentanoic acid displayed a significant female-biased response.  Combined with the phylogenetic analysis, 10 OfurIRs in clade 4 were roughly predicted to be candidate receptors for 2-oxopentanoic acid and other tested acids.  These results provide basic information about OfurIRs and may help advance the knolwedge on the olfactory system of O. furnacalis
Reference | Related Articles | Metrics
Substituting nitrogen and phosphorus fertilizer with optimal amount of crop straw improved rice grain yield, nutrient use efficiency and soil carbon sequestration
XIE Jun, Blagodatskaya EVGENIA, ZHANG Yu, WAN Yu, HU Qi-juan, ZHANG Cheng-ming, WANG Jie, ZHANG Yue-qiang, SHI Xiao-jun
2022, 21 (11): 3345-3355.   DOI: 10.1016/j.jia.2022.08.059
Abstract363)      PDF in ScienceDirect      

Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits.  However, the appropriate amount of straw to substitute for fertilizer remains unclear.  A field experiment was performed from 2016 to 2018 to explore the effect of different amounts of straw to substitute for fertilizer on soil properties, soil organic carbon (SOC) storage, grain yield, yield components, nitrogen (N) use efficiency, phosphorus (P) use efficiency, N surplus, and P surplus after rice harvesting.  Relative to mineral fertilization alone, straw substitution at 5 t ha–1 improved the number of spikelets per panicle, effective panicle, seed setting rate, 1 000-grain weight, and grain yield, and also increased the aboveground N and P uptake in rice.  Straw substitution exceeding 2.5 t ha–1 increased the soil available N, P, and K concentrations as compared with mineral fertilization, and different amounts of straw substitution improved SOC storage compared with mineral fertilization.  Furthermore, straw substitution at 5 t ha–1 decreased the N surplus and P surplus by up to 68.3 and 28.9%, respectively, compared to mineral fertilization.  Rice aboveground N and P uptake and soil properties together contributed 19.3% to the variation in rice grain yield and yield components.  Straw substitution at 5 t ha–1, an optimal fertilization regime, improved soil properties, SOC storage, grain yield, yield components, N use efficiency (NUE), and P use efficiency (PUE) while simultaneously decreasing the risk of environmental contamination.

Reference | Related Articles | Metrics
dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation
HUANG Li-ying, Li Xiao-xiao, ZHANG Yun-bo, Shah FAHAD, WANG Fei
2022, 21 (11): 3185-3198.   DOI: 10.1016/j.jia.2022.07.057
Abstract264)      PDF in ScienceDirect      

The rice cultivars carrying dep1 (dense and erect panicle 1) have the potential to achieve both high grain yield and high nitrogen use efficiency (NUE).  However, few studies have focused on the agronomic and physiological performance of those cultivars associated with high yield and high NUE under field conditions.  Therefore, we evaluated the yield performance and NUE of two near-isogenic lines (NILs) carrying DEP1 (NIL-DEP1) and dep1-1 (NIL-dep1) genes under the Nanjing 6 background at 0 and 120 kg N ha–1.  Grain yield and NUE for grain production (NUEg) were 25.5 and 21.9% higher in NIL-dep1 compared to NIL-DEP1 averaged across N treatments and planting years, respectively.  The yield advantage of NIL-dep1 over NIL-DEP1 was mainly due to larger sink size (i.e., higher total spikelet number), grain-filling percentage, total dry matter production, and harvest index.  N utilization rather than N uptake contributed to the high yield of NIL-dep1.  Significantly higher NUEg in NIL-dep1 was associated with higher N and dry matter translocation efficiency, lower leaf and stem N concentration at maturity, and higher glutamine synthetase (GS) activity in leaves.  In conclusion, dep1 improved grain yield and NUE by increasing N and dry matter transport due to higher leaf GS activity under field conditions during the grain-filling period.

Reference | Related Articles | Metrics
Inhibition of miR397 by STTM technology to increase sweetpotato resistance to SPVD
LI Chen, LIU Xuan-xuan, ABOUELNASR Hesham, MOHAMED HAMED Arisha, KOU Meng, TANG Wei, YAN Hui, WANG Xin, WANG Xiao-xiao, ZHANG Yun-gang, LIU Ya-ju, GAO Run-fei, MA Meng, LI Qiang
2022, 21 (10): 2865-2875.   DOI: 10.1016/j.jia.2022.07.054
Abstract203)      PDF in ScienceDirect      

As a critical food crop, sweetpotato (Ipomoea batatas (L.) Lam.) is widely planted all over the world, but it is deeply affected by Sweetpotato Virus Disease (SPVD).  The present study utilized short tandem target mimic (STTM) technology to effectively up-regulate the expression of laccase (IbLACs) by successfully inhibiting the expression of miR397.  The upstream genes in the lignin synthesis pathway were widely up-regulated by feedback regulation, including phenylalanine ammonialyase (PAL), 4-coumarate-CoAligase (4CL), hydroxycinnamoyl CoA:shikimatetransferase (HTC), caffeicacid O-methyltransferase (COMT), and cinnamyl alcohol dehydrogenase (CAD).  Meanwhile, the activities of PAL and LAC increased significantly, finally leading to increased lignin content.  Lignin deposition in the cell wall increased the physical defence ability of transgenic sweetpotato plants, reduced the accumulation of SPVD transmitted by Bemisia tabaci (Gennadius), and promoted healthy sweetpotato growth.  The results provide new insights for disease resistance breeding and green production of sweetpotato. 

Reference | Related Articles | Metrics
Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)
SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang
2021, 20 (9): 2424-2437.   DOI: 10.1016/S2095-3119(20)63568-7
Abstract162)      PDF in ScienceDirect      
Salicylic acid (SA) plays a pivotal role in delaying fruit ripening and senescence.  However, little is known about its underlying mechanism of action.  In this study, RNA sequencing was conducted to analyze and compare the transcriptome profiles of SA-treated and control pear fruits.  We found a total of 159 and 419 genes differentially expressed between the SA-treated and control pear fruits after 12 and 24 h of treatment, respectively.  Among these differentially expressed genes (DEGs), 125 genes were continuously differentially expressed at both treatment times, and they were identified as candidate genes that might be associated with SA-regulated fruit ripening and senescence.  Bioinformatics analysis results showed that 125 DEGs were mainly associated with plant hormone biosynthesis and metabolism, cell wall metabolism and modification, antioxidant systems, and senescence-associated transcription factors.  Additionally, the expression of several candidate DEGs in ripening and senescent pear fruits after SA treatments were further validated by quantitative real-time PCR (qRT-PCR).  This study provides valuable information and enhances the understanding of the comprehensive mechanisms of SA-meditated pear fruit ripening and senescence.
 
Reference | Related Articles | Metrics
Geographic variation in the yield formation of single-season high-yielding hybrid rice in southern China
WANG Dan-ying, LI Xu-yi, YE Chang, XU Chun-mei, CHEN Song, CHU Guang, ZHANG Yun-bo, ZHANG Xiu-fu
2021, 20 (2): 438-449.   DOI: 10.1016/S2095-3119(20)63360-3
Abstract85)      PDF in ScienceDirect      
Environmental conditions greatly affect the growth of rice. To investigate the geographic differences in yield formation of single-season high-yielding hybrid rice in southern China, experiments were conducted in 2017 and 2018 in the upper and middle–lower reaches of the Yangtze River with 10–30 main locally planted high-yielding hybrid cultivars used as materials. Compared with rice planted in the middle–lower reaches of the Yangtze River, rice planted in the upper reaches has a longer tillering duration, higher accumulated temperature (≥10°C) during tillering period, but lower accumulated temperature and solar radiation from initial booting to maturity. Yield traits comparison between the upper and the middle–lower reaches of Yangtze River showed that the former had 48.1% more panicles per unit area while the latter had 46.4% more grains per panicle; the rice yield in the former was positively correlated with the seed setting rate and the dry matter accumulation before heading, while the latter was positively correlated with grains per panicle and dry matter accumulation from booting to maturity. Comparison of the same variety Tianyouhuazhan planted in different regions showed there was a significant positive correlation between panicle number and the duration of and accumulated temperature during the tillering period (r=0.982**, r=0.993**, respectively), and between grains per panicle and accumulated solar radiation during booting period (r=0.952*). In the upper reaches of the Yangtze River, more than 90% of cultivars with an yield of greater than 11 t ha–1 had an effective panicle number of 250–340 m–2, and there was a significant negative correlation between seed setting rate and grains per panicle; therefore, the high-yielding rice production in these regions with a long effective tillering period (>40 d) should choose varieties with moderate grains per panicle, adopt crop managements such as good fertilizer and water measures during vegetative growth period to ensure a certain number of effective panicles, and to increase the dry matter accumulation before heading. While in regions with a short effective tillering period (<20 d) but good sunshine conditions during the reproductive growth period, such as the middle–lower reaches of the Yangtze River, high-yielding rice production should choose cultivars with large panicles, adopt good water and fertilizer managements during the reproductive growth period to ensure the formation of large panicles and the increase of dry matter accumulation after heading.
Related Articles | Metrics
Three sensitive and reliable serological assays for detection of potato virus A in potato plants
WU Jia-yu, ZHANG Yu, ZHOU Xue-ping, QIAN Ya-juan
2021, 20 (11): 2966-2975.   DOI: 10.1016/S2095-3119(20)63492-X
Abstract155)      PDF in ScienceDirect      
Vegetative propagation of seed potato often allows passaging of viruses to seed tubers, resulting in significant yield losses and reduction of potato tuber quality.  Thus, virus detection approach is crucial for effective virus management programs and the production of virus-free seed potatoes.  Among the reported potato-infecting viruses, potato virus A (PVA) is considered as one of the most important viruses in potato-growing regions worldwide.  This study prepared four hybridoma lines secreting PVA-specific monoclonal antibodies (MAbs) (2D4, 8E11, 14A6 and 16H10) using purified PVA virions as an immunogen.  Western blotting results indicated that all the four MAbs reacted strongly and specifically with the putative capsid protein of PVA.  Using these four MAbs, this study developed antigen-coated plate enzyme-linked immunosorbent assay (ACP-ELISA), Dot-ELISA and Tissue print-ELISA for detection of PVA infection in potato plants.  The results indicated that PVA can be detected in crude tissue extracts from infected potato plants diluted up to 1:327 680 (w/v, g mL–1) by ACP-ELISA or up to 1:10 240 by Dot-ELISA.  The Tissue print-ELISA is the quickest and easiest approach among the three serological assays, and is more suitable for onsite large-scale potato screening programs.  Further analyses of field-collected potato samples showed that the sensitivities and specificities of the three serological approaches were similar to those of RT-PCR in PVA detection and confirmed that PVA is currently widespread in Yunnan and Zhejiang provinces of China.  Hence, the results strongly suggest that these highly sensitive serological approaches based on PVA-specific MAbs are useful and powerful for PVA-free seed potato production programs and PVA field surveys. 
Reference | Related Articles | Metrics
Does nitrogen application rate affect the moisture content of corn grains?
ZHANG Yuan-meng, XUE Jun, ZHAI Juan, ZHANG Guo-qiang, ZHANG Wan-xu, WANG Ke-ru, MING Bo, HOU Peng, XIE Rui-zhi, LIU Chao-wei, LI Shao-kun
2021, 20 (10): 2627-2638.   DOI: 10.1016/S2095-3119(20)63401-3
Abstract89)      PDF in ScienceDirect      
Nitrogen fertilizer application is an important measure to obtain high and stable corn yield, and the moisture content of corn grains is an important factor affecting the quality of mechanical grain harvesting.  In this study, four different nitrogen fertilizer treatments from 0 to 450 kg ha–1 pure nitrogen were set for a planting density of 12.0×104 plants ha–1 in 2017 and 2018, and 18 different nitrogen fertilizer treatments from 0 to 765 kg ha–1 pure nitrogen were set for planting densities of 7.5×104 and 12.0×104 plants ha–1 in 2019, to investigate the effect of nitrogen application rate on the moisture content of corn grains.  Under each treatment, the growth of corn, leaf area index (LAI) of green leaves, grain moisture content, and grain dehydration rate were measured.  The results showed that, as nitrogen application increased from 0 to 765 kg ha–1, the silking stage was delayed by about 1 day, the maturity stage was delayed by about 1–2 days, and the number of physiologically mature green leaves and LAI increased.  At and after physiological maturity, the extreme difference in grain moisture content between different nitrogen application rates was 1.9–4.0%.  As the amount of nitrogen application increased, the corn grain dehydration rate after physiological maturity decreased, but it did not reach statistical significance between nitrogen application rate and grain dehydration rate.  No significant correlation was observed between LAI at physiological maturity and grain dehydration rate after physiological maturity.  In short, nitrogen application affected the grain moisture content of corn at and after physiological maturity, however, the difference in grain moisture content among different nitrogen application rates was small.  These results suggest that the effect of nitrogen application on the moisture content of corn grains should not be considered in agricultural production.
Reference | Related Articles | Metrics
Switches in transcriptome functions during seven skeletal muscle development stages from fetus to kid in Capra hircus
LING Ying-hui, ZHENG Qi, JING Jing, SUI Meng-hua, ZHU Lu, LI Yun-sheng, ZHANG Yun-hai, LIU Ya, FANG Fu-gui, ZHANG Xiao-rong
2021, 20 (1): 212-226.   DOI: 10.1016/S2095-3119(20)63268-3
Abstract217)      PDF in ScienceDirect      
Skeletal muscle accounts for about 40% of mammalian body weight, the development of which is a dynamic, complex and precisely regulated process that is critical for meat production. We here described the transcriptome expression profile in 21 goat samples collected at 7 growth stages from fetus to kid, including fetal 45 (F45), 65 (F65), 90 (F90), 120 (F120), and 135 (F135) days, and birth 1 (B1) day and 90 (B90) days kids.  Paraffin sections combined with RNA-seq data of the 7 stages divided the transcriptomic functions of skeletal muscle into 4 states: before F90, F120, F135 and B1, and B90.  And the dynamic expression of all 4 793 differentially expressed genes (DEGs) was identified.  Furthermore, DEGs were clustered by weighted gene correlation network analysis into 4 modules (turquoise, grey, blue and brown) that corresponded to these 4 states.  Functional and pathway analysis indicated that the active genes in the stages before F90 (turquoise) were closely related to skeletal muscle proliferation.  The DEGs in the F120-related module (grey) were found to participate in the regulation of skeletal muscle structure and skeletal muscle development by regulating tRNA.  The brown module (F135 and B1) regulated fatty acid biological processes to maintain the normal development of muscle cells.  The DEGs of B90 high correlation module (blue) were involved the strengthening and power of skeletal muscle through the regulation of actin filaments and tropomyosin.  Our current data thus revealed the internal functional conversion of the goat skeletal muscle in the growth from fetus to kid.  The results provided a theoretical basis for analyzing the involvement of mRNA in skeletal muscle development.
 
Reference | Related Articles | Metrics
Monoclonal antibody-based serological detection of potato virus M in potato plants and tubers
ZHANG Yu, GAO Yan-ling, HE Wan-qin, WANG Ya-qin, QIAN Ya-juan, ZHOU Xue-ping, WU Jian-xiang
2020, 19 (5): 1283-1291.   DOI: 10.1016/S2095-3119(19)62755-3
Abstract134)      PDF in ScienceDirect      
Potato virus M (PVM) is one of the common and economically important potato viruses in potato-growing regions worldwide.  To investigate and control this viral disease, efficient and specific detection techniques are needed.  In this study, PVM virions were purified from infected potato plants and used as the immunogen to produce hybridomas secreting PVM-specific monoclonal antibodies (MAbs).  Four highly specific and sensitive murine MAbs, i.e., 1E1, 2A5, 8A1 and 17G8 were prepared through a conventional hybridoma technology.  Using these four MAbs, we have developed an antigen-coated plate (ACP)-ELISA, a dot-ELISA and a Tissue print-ELISA for detecting PVM infection in potato plants and tubers.  PVM could be detected in infected potato plant tissue crude extracts diluted at 1:10 240 (w/v, g mL–1) by the dot-ELISA or at 1:163 840 (w/v, g mL–1) by the ACP-ELISA.  The Tissue print-ELISA is the quickest and easiest assay among the three established serological assays and is more suitable for onsite large-scale sample detection.  Detection results of the field-collected samples showed that PVM is currently widespread in the Yunnan and the Heilongjiang provinces in China.  The field sample test results of the developed serological assays were supported by the results from RT-PCR and DNA sequencing.  We consider that the newly established ACP-ELISA, dot-ELISA and Tissue print-ELISA can benefit PVM detection in potato plant and tuber samples and field epidemiological studies of PVM.  These assays can also facilitate the production of virus-free seed potatoes and breeding for PVM-resistant potato cultivars, leading to the successful prevention of this potato viral disease.
 
Reference | Related Articles | Metrics
Effects of Paranosema locustae (Microsporidia) on the development and morphological phase transformation of Locusta migratoria (Orthoptera: Acrididae) through modulation of the neurotransmitter taurine
LI Ao-mei, YIN Yue, ZHANG Yu-xin, ZHANG Liu, ZHANG Kai-qi, SHEN Jie, TAN Shu-qian, SHI Wang-peng
2020, 19 (1): 204-210.   DOI: 10.1016/S2095-3119(19)62637-7
Abstract106)      PDF in ScienceDirect      
Neurotransmitters are important in the maintenance of phase transformation of Locusta migratoria (Arthropoda: Orthoptera).  Here, the effects of the entomopathogen Paranosema locustae on the neurotransmitter taurine in migratory locusts were studied using biochemical methods.  After inoculation with P. locustae, the taurine content of infected locusts significantly declined, but F/C values (ratio between the length of hind femur and the width of the head of locust) increased significantly, compared to healthy locusts.  Meanwhile, F/C values of infected locusts that were injected with 2 µg of taurine showed no significant differences from those of healthy locusts, demonstrating that supplemental taurine inhibited the changes in morphological phase caused by P. locustaeParanosema locustae infection also caused longer developmental durations and lower body weights of locusts, but these changes were unaffected after injection with taurine.  These results provided new insights into the mechanisms by which microsporidian parasites affected their locust hosts.
Reference | Related Articles | Metrics
Identification and characterization of a TLR13 gene homologue from Laodelphax striatellus involved in the immune response induced by rice stripe virus
ZHOU Xue, HU Jia, FU Mei-li, JIN Ping, ZHANG Yun-ye, XIANG Ying, LI Yao, MA Fei
2020, 19 (1): 183-192.   DOI: 10.1016/S2095-3119(19)62795-4
Abstract200)      PDF in ScienceDirect      
Toll-like receptors (TLRs) are the critical superfamily homologues that initiate sensing of the invasion of pathogens by the Toll pathway.  As one of several intracellular nucleic acid-sensing TLRs, TLR13 is activated by an unmethylated motif present in the large ribosomal subunit of bacterial RNA.  However, little attention has been paid to the function of TLR13 gene homologue from Laodelphax striatellus (designated as LsToll-13) in the immune response to rice stripe virus (RSV).  Herein, LsToll-13 was cloned and characterized using RACE-PCR.  Phylogenetic analysis showed that LsToll-13 was clustered with the TLR13 from six insects.  Real-time PCR analysis demonstrated that the expression level of LsToll-13 was significantly reduced in L.?striatellus with RSV infection compared with that in the naive strain.  When the expression of LsToll-13 was significantly up-regulated at 6 h after bacterial infection, the expression of ribonucleoprotein (RNP) indicated that the RSV titer in the host insect was significantly suppressed.  Upon knockdown of LsToll-13, using RNA interference (RNAi) in L.?striatellus, the expression level of RNP was significantly increased with enhanced RSV accumulation, suggesting that LsToll-13 potentially protects L.?striatellus from RSV infection.  Taken together, our results indicated that LsToll-13 might be involved in the immune response of L.?striatellus to RSV infection, and provided a new insight into further elucidating the molecular mechanisms of complex pathogen-host interactions and integrative pest management.
Reference | Related Articles | Metrics
Characterization of low-N responses in maize (Zea mays L.) cultivars with contrasting nitrogen use efficiency in the North China Plain
LI Xiang-ling, GUO Li-guo, ZHOU Bao-yuan, TANG Xiang-ming, CHEN Cong-cong, ZHANG Lei, ZHANG Shao-yun, LI Chong-feng, XIAO Kai, DONG Wei-xin, YIN Bao-zhong, ZHANG Yue-chen
2019, 18 (9): 2141-2152.   DOI: 10.1016/S2095-3119(19)62597-9
Abstract144)      PDF in ScienceDirect      
Over-use of N fertilizer in crop production has resulted in a series of environmental problems in the North China Plain (NCP).  Thus, improvement of nitrogen use efficiency (NUE) in summer maize has become an effective strategy for promoting sustainable agriculture in this region.  Using twenty maize cultivars, plant dry matter production, N absorption and accumulation, yield formation, and NUE in summer maize were investigated under three N levels in two growing seasons.  Based on their yield and yield components, these maize cultivars were categorized into four groups including efficient-efficient (EE) cultivars, high-nitrogen efficient (HNE) cultivars, low-nitrogen efficient (LNE) cultivars and nonefficient-nonefficient (NN) cultivars.  In both two seasons, the EE cultivars improved grain yield together with increased plant biomass, and enhanced accumulative amounts as well as higher average grain yields than the other cultivar groups under deficient-N conditions.  Significant correlations were observed between yield and kernel numbers (KN), dry matter (DM) amount and N accumulation at both post-silking and maturity stages.  DM and N accumulation at late growth stage (i.e., from silking to maturity) contributed largely to the enhanced yield capacity and improved NUE under N-deficient conditions.  Compared with the NN cultivars, the EE cultivars also showed increased N assimilation amount (NAA) and N remobilization content (NRC), and elevated N remobilization efficiency (NRE), NUE and nitrogen partial factor productivity (PFPN).  Our investigation has revealed N-associated physiological processes and may provide guidance for cultivation and breeding of high yield and NUE summer maize under limited N conditions in the NCP.
Reference | Related Articles | Metrics
Developing sustainable summer maize production for smallholder farmers in the North China Plain: An agronomic diagnosis method
CHEN Guang-feng, CAO Hong-zhu, CHEN Dong-dong, ZHANG Ling-bo, ZHAO Wei-li, ZHANG Yu, MA Wen-qi, JIANG Rong-feng, ZHANG Hong-yan, ZHANG Fu-suo
2019, 18 (8): 1667-1679.   DOI: 10.1016/S2095-3119(18)62151-3
Abstract138)      PDF in ScienceDirect      
With an increasing population and changing diet structure, summer maize is increasingly becoming an important energy crop in China.  However, traditional farmer practices for maize production are inefficient and unsustainable.  To ensure food security and sustainable development of summer maize production in China, an improved, more sustainable farmer management system is needed.  Establishing this system requires a comprehensive understanding of the limitations of current farming practice and the ways it could be improved.  In our study, 235 plots from three villages in the North China Plain (NCP) were monitored.  Maize production on farms was evaluated; our results showed that the maize yield and nitrogen partial factor productivity (PFPN) were variable on smallholder farms at 6.6–13.7 t ha–1 and 15.4–88.7 kg kg–1, respectively.  Traditional farming practices also have a large environmental impact (nitrogen surplus: –64.2–323.78 kg ha–1).  Key yield components were identified by agronomic diagnosis.  Grain yield depend heavily on grain numbers per hectare rather than on the 1 000-grain weight.  A set of improved management practices (IP) for maize production was designed by employing a boundary line (BL) approach and tested on farms.  Results showed that the IP could increase yield by 18.4% and PFPN by 31.1%, compared with traditional farmer practices (FP), and reduce the nitrogen (N) surplus by 57.9 kg ha–1.  However, in terms of IP effect, there was a large heterogeneity among different smallholder farmers’ fields, meaning that, precise technologies were needed in different sites especially for N fertilizer management.  Our results are valuable for policymakers and smallholder farmers for meeting the objectives of green development in agricultural production.
Reference | Related Articles | Metrics
Estimating total leaf nitrogen concentration in winter wheat by canopy hyperspectral data and nitrogen vertical distribution
DUAN Dan-dan, ZHAO Chun-jiang, LI Zhen-hai, YANG Gui-jun, ZHAO Yu, QIAO Xiao-jun, ZHANG Yun-he, ZHANG Lai-xi, YANG Wu-de
2019, 18 (7): 1562-1570.   DOI: 10.1016/S2095-3119(19)62686-9
Abstract223)      PDF in ScienceDirect      
The use of remote sensing to monitor nitrogen (N) in crops is important for obtaining both economic benefit and ecological value because it helps to improve the efficiency of fertilization and reduces the ecological and environmental burden.  In this study, we model the total leaf N concentration (TLNC) in winter wheat constructed from hyperspectral data by considering the vertical N distribution (VND).  The field hyperspectral data of winter wheat acquired during the 2013–2014 growing season were used to construct and validate the model.  The results show that: (1) the vertical distribution law of LNC was distinct, presenting a quadratic polynomial tendency from the top layer to the bottom layer.  (2) The effective layer for remote sensing detection varied at different growth stages.  The entire canopy, the three upper layers, the three upper layers, and the top layer are the effective layers at the jointing stage, flag leaf stage, flowering stages, and filling stage, respectively.  (3) The TLNC model considering the VND has high predicting accuracy and stability.  For models based on the greenness index (GI), mND705 (modified normalized difference 705), and normalized difference vegetation index (NDVI), the values for the determining coefficient (R2), and normalized root mean square error (nRMSE) are 0.61 and 8.84%, 0.59 and 8.89%, and 0.53 and 9.37%, respectively.  Therefore, the LNC model with VND provides an accurate and non-destructive method to monitor N levels in the field.
Reference | Related Articles | Metrics
Identification of an H1N1 subtype of swine influenza virus and serological analysis
SUN Fa-chao, TAN Min, ZHANG Yuan-chao, WANG Yu-chao, CAO Sheng-liang, DING Guo-fei, CONG Fang-yuan, GUO Li-hong, LIU Si-dang, XIAO Yi-hong
2019, 18 (7): 1436-1442.   DOI: 10.1016/S2095-3119(19)62579-7
Abstract229)      PDF in ScienceDirect      
To investigate the epizootic of swine influenza virus (SIV), 60 nasal swabs were collected from a clinical cases of pig farm in Tai’an City, Shandong Province of China in April 2017.  SIV was isolated by inoculating into 10-day-old Special Pathogen Free embryonated eggs and the whole genome was sequenced.  An H1N1 subtype SIV was isolated and designated as A/swine/Shandong/TA04/2017(H1N1).  Phylogenetic analysis showed that apart from the polymerase A (PA) fragment belonging to the 2009 pandemic H1N1 branch, seven genome segments belonged to avian-like H1N1 influenza virus lineage.  The cleavage site sequence of the hemagglutinin (HA) protein was PSIQSR↓G, which is a typical molecular biological characteristic.  Five potential N-glycosylation sites (N14, N26, N277, N484 and N543) were found in the HA gene.  To further investigate the epidemiology of SIV in this farm, the 995 serum samples were assessed with EAH1N1 2009 pandemic H1N1 and H3N2 antigens.  The results showed that the total positive rate was 65.43%.  The positive rates of single virus infection detected by EAH1N1, 2009pdmH1N1 and H3N2 for serum HI (Hemagglutination inhibition) were 48.35, 30.85 and 7.47%, respectively.  The results showed that SIV in Shandong Province has been reassorted in some segments and the SIV-positive rate was high on the SIV outbreak farm.  These data provide evidence of an epizootic of SIV.
Reference | Related Articles | Metrics
Development of a reverse-transcription loop-mediated isothermal amplification assay to detect avian influenza viruses in clinical specimens
SHI Lin, YU Xue-wu, YAO Wei, YU Ben-liang, HE Li-kun, GAO Yuan, ZHANG Yun-xian, TIAN Guo-bin, PING Ji-hui, WANG Xiu-rong
2019, 18 (7): 1428-1435.   DOI: 10.1016/S2095-3119(19)62700-0
Abstract249)      PDF in ScienceDirect      
In recent years, the avian influenza has brought not only serious economic loss to the poultry industry in China but also a serious threat to human health because of the avian influenza virus (AIV) gene recombination and reassortment.  Until now, traditional RT-PCR, fluorescence RT-PCR and virus isolation identification have been developed and utilized to detect AIV, but these methods require high-level instruments and experimental conditions, not suitable for the rapid detection in field and farms.  In order to develop a rapid, sensitive and practical method to detect and identify AIV subtypes, 4 specific primers to the conserved region of AIV M gene were designed and a loop-mediated isothermal amplification (RT-LAMP) method was established.  Using this method, the M gene of H1–H16 subtypes of AIV were amplified in 30 min with a water bath and all 16 H subtypes of AIV were able to be visually identified in presence of fluorescein, without cross reaction with other susceptible avian viruses.  In addition, the detection limit of the common H1, H5, H7, and H9 AIV subtypes with the RT-LAMP method was 0.1 PFU (plaque-forming unit), which was 10 times more sensitive than that using the routine RT-PCR.  Further comparative tests found that the positivity rate of RT-LAMP on detecting clinical samples was 4.18% (14/335) comparing with 3.58% (12/335) from real-time RT-PCR.  All these results suggested that the RT-LAMP method can specifically detect and identify AIV with high sensitivity and can be considered as a fast, convenient and practical method for the clinic test and epidemiological investigation of AIV.
 
Reference | Related Articles | Metrics
Overhead supplemental far-red light stimulates tomato growth under intra-canopy lighting with LEDs
ZHANG Ya-ting, ZHANG Yu-qi, YANG Qi-chang, LI Tao
2019, 18 (1): 62-69.   DOI: 10.1016/S2095-3119(18)62130-6
Abstract362)      PDF (1023KB)(801)      
Far-red (FR) light regulates phytochrome-mediated morphological and physiological plant responses.  This study aims to investigate how greenhouse tomato morphology and production response to different durations of FR light during daytime and at the end of day (EOD).  High-wire tomato plants were grown under intra-canopy lighting consisting of red (peak wavelength at 640 nm) and blue (peak wavelength at 450 nm) light-emitting diodes (LEDs) with photosynthetic photon flux density (PPFD) of 144 μmol m–2 s–1 at 10 cm away from the lamps, and combined with overhead supplemental FR light (peak wavelength at 735 nm) with PPFD of 43 μmol m–2 s–1 at 20 cm below the lamps.  Plants were exposed to three durations of FR supplemental lighting including: 06:00–18:00 (FR12), 18:00–19:30 (EOD-FR1.5), 18:00–18:30 (EOD-FR0.5), and control that without supplemental FR light.  The results showed that supplemental FR light significantly stimulated stem elongation thereby resulting in longer plants compared with the control.  Moreover, FR light altered leaf morphology toward higher leaf length/width ratio and larger leaf area.  The altered plant architecture in FR supplemented plants led to a more homogeneous light distribution inside the canopy.  Total plant biomass was increased by 9–16% under supplemental FR light in comparison with control, which led to 7–12% increase in ripe fruit yield.  Soluble sugar content of the ripe tomato fruit was slightly decreased by longer exposure of the plants to FR light.  Dry matter partitioning to different plant organs were not substantially affected by the FR light treatments.  No significant differences were observed among the three FR light treatments in plant morphology as well as yield and biomass production.  We conclude that under intra-canopy lighting, overhead supplemental FR light stimulates tomato growth and production.  And supplementary of EOD-FR0.5 is more favorable, as it consumes less electricity but induces similar effects on plant morphology and yield.
Reference | Related Articles | Metrics
Mycoplasma leachii causes polyarthritis in calves via the blood route but is not associated with pneumonia
CHANG Ji-tao, WANG Guan-bo, ZHANG Yue, WANG Fang, JIANG Zhi-gang, YU Li
2018, 17 (11): 2536-2545.   DOI: 10.1016/S2095-3119(18)62050-7
Abstract298)      PDF (4124KB)(233)      
Mycoplasma leachii was initially isolated from arthritic calves in South Queensland, Australia, and its ability to cause clinical polyarthritis in calves was demonstrated by experimental infection.  However, the source of M. leachii infection in calves and its means of spreading are not well known.  In this study, one-month-old calves were inoculated with cultures of M. leachii or joint fluid (collected from M. leachii-infected calves) through the intraarticular, intravenous, intratracheal, intranasal or oral routes.  Multidisciplinary procedures, including clinical assessment, etiology assessment, pathology and immunohistochemistry (IHC), were used to evaluate the pathogenicity of M. leachii in calves and to elucidate the transmission route of M. leachii infection in calves.  The results showed that all calves inoculated intraarticularly with cultured GN407 or joint fluid and two-thirds of the calves inoculated intravenously with joint fluid developed severe polyarthritis, and the M. leachii antigen was detected in the joints of all infected calves by IHC and PCR.  In contrast, calves inoculated with cultured M. leachii or joint fluid through the intratracheal, intranasal or oral routes did not show any M. leachii infection in the clinical assessment, etiology assessment, or pathology and IHC results.  These results indicated that polyarthritis caused by M. leachii in calves is transmitted via the blood route; however, this disease is not transmitted through the respiratory or digestive routes.  In addition, the M. leachii antigen was not detected in the lungs of all the inoculated calves using IHC and PCR, indicating that M. leachii is not associated with pneumonia, even in the calves inoculated through the respiratory duct.  These findings are important information for the prevention and control of calf polyarthritis caused by M. leachii.
 
Reference | Related Articles | Metrics
Analysis on the migration of first-generation Mythimna separata (Walker) in China in 2013
ZHANG Zhi, ZHANG Yun-hui, WANG Jian, LIU Jie, TANG Qing-bo, LI Xiang-rui, CHENG Deng-fa, ZHU Xun
2018, 17 (07): 1527-1537.   DOI: 10.1016/S2095-3119(17)61885-9
Abstract396)      PDF in ScienceDirect      
Mythimna separata (Walker) is an important pest which can cause serious damages to cereal crops.  In the past two decades, several heavy outbreaks have taken place in northern China.  In order to develop a fine-scale method of forecasting outbreaks, population data were collected in northern China using searchlight traps and ground light traps.  A background weather pattern analysis and trajectory analysis were performed via the Weather Research and Forecast (WRF) and FLEXPART models.  Our results showed that heavy migration of first-generation M. separata appeared in northern China in 2013.  In Yanqing District, Beijing, the cumulative number of captured adults in searchlight traps was around 250 000 and the daily maximum for trapped moths was 86 000.  During the peak period, the majority of M. separata moths arrived after 00:00 every night.  The sex ratio (female:male) at each monitoring site was greater than 1 and greatly fluctuated with population dynamics.  During the migration peak, prevailing downdraft winds benefited M. separata moths to land passively.  Trajectory simulation showed that immigrants were from Anhui, Jiangsu and Hubei provinces and most of them could continue to fly into the northeastern regions of China.  These results provide technical support for fine-scale forecasting of the outbreak of M. separata at meso- and micro-scale. 
 
Reference | Related Articles | Metrics
Characterization of GhSERK2 and its expression associated with somatic embryogenesis and hormones level in Upland cotton
LIU Zheng-jie, ZHAO Yan-peng, ZENG Ling-he, ZHANG Yuan, WANG Yu-mei, HUA Jin-ping
2018, 17 (03): 517-529.   DOI: 10.1016/S2095-3119(17)61726-X
Abstract678)      PDF in ScienceDirect      
Somatic embryogenesis (SE) is one of the most important steps during regeneration of cotton, but the molecular mechanism of SE remains unclear.  SOMATIC EMBRYOGENSIS RECEPTOR KINASE (SERK) gene is known to function in SE.  A homolog GhSERK2 (accession number: JF430801) was cloned from Upland cotton and characterized for its functions in SE.  GhSERK2 expressed in different tissues and showed higher expression level in floral organs than vegetative ones with the highest levels in ovule and anther.  GhSERK2 expressed during SE with a high level at globular embryos stage.  Upon treatment with indole-3-butytic acid (IBA), the transcription level of GhSERK2 was induced and promoted SE subsequently.  A 2-day treatment of 2,4-dichlorophenoxyacetic acid (2,4-D) induced the expression of GhSERK2, but treatments of 2,4-D for longer periods sharply inhibited the GhSERK2 transcription level of embryogenic callus (EC).  The levels of hormones, including 3-indoleacetic acid (IAA), abscisic acid (ABA), and brassinosteroid (BR), were increased in the initial calli induced from the over-expression of GhSERK2 cotton.  Our results indicated that GhSERK2 expression was associated with induction of SE and closely related to hormone levels during tissue culture in Upland cotton, and the gene might play an important role in regeneration of cotton.
Reference | Related Articles | Metrics