Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (10): 2865-2875    DOI: 10.1016/j.jia.2022.07.054
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Inhibition of miR397 by STTM technology to increase sweetpotato resistance to SPVD

LI Chen1, 2*, LIU Xuan-xuan2*, ABOUELNASR Hesham1, 3, MOHAMED HAMED Arisha1, 4, KOU Meng1, TANG Wei1, 2, YAN Hui1, 2, WANG Xin1, WANG Xiao-xiao2, ZHANG Yun-gang1, LIU Ya-ju1, GAO Run-fei1, MA Meng1, LI Qiang1, 2

1 Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, P.R.China
2 School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R.China
3 Plant Pathology Department, Agriculture and Biology research division, National research center, Giza 12622, Egypt
4 Department of Horticulture, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia 44511, Egypt
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  甘薯(Ipomoea batatas (L.) Lam.)作为一种重要的杂粮作物,在世界各地广泛种植,但深受甘薯病毒病(SPVD)的影响。本研究利用短串联靶标模拟物(STTM)成功抑制甘薯miR397的表达,上调其靶基因漆酶(IbLACs)的表达,使木质素合成途径的上游基因,包括苯丙氨酸解氨酶(PAL)、4-香豆酸辅酶A连接酶(4CL)、羟基肉桂酰CoA:莽草酸/奎宁酸羟基肉桂酰转移酶(HTC)、咖啡酸O-甲基转移酶(COMT)、肉桂醇脱氢酶(CAD)等基因被反馈调控而广泛上调表达。同时,导致PAL和LAC的酶活性显著增加,促进木质素的合成与积累。木质素在细胞壁中的沉积增加了转基因甘薯植株的物理防御能力,有效减少了烟粉虱对SPVD的传播,保证甘薯的健康生长。本研究为甘薯抗病育种和绿色生产提供了新思路。

Abstract  

As a critical food crop, sweetpotato (Ipomoea batatas (L.) Lam.) is widely planted all over the world, but it is deeply affected by Sweetpotato Virus Disease (SPVD).  The present study utilized short tandem target mimic (STTM) technology to effectively up-regulate the expression of laccase (IbLACs) by successfully inhibiting the expression of miR397.  The upstream genes in the lignin synthesis pathway were widely up-regulated by feedback regulation, including phenylalanine ammonialyase (PAL), 4-coumarate-CoAligase (4CL), hydroxycinnamoyl CoA:shikimatetransferase (HTC), caffeicacid O-methyltransferase (COMT), and cinnamyl alcohol dehydrogenase (CAD).  Meanwhile, the activities of PAL and LAC increased significantly, finally leading to increased lignin content.  Lignin deposition in the cell wall increased the physical defence ability of transgenic sweetpotato plants, reduced the accumulation of SPVD transmitted by Bemisia tabaci (Gennadius), and promoted healthy sweetpotato growth.  The results provide new insights for disease resistance breeding and green production of sweetpotato. 

Keywords:  sweetpotato        miR397        STTM        SPVD        lignin content  
Received: 22 March 2021   Accepted: 07 June 2021
Fund: This work was financially supported by the National Key R&D Program of China (2019YFD1001300 and 2019YFD1001305), the earmarked fund for CARS-10-Sweetpotato, and the Jiangsu Postgraduate Scientific Research and Practical Innovation Program Project, China (KYCX19-2207).

About author:  LI Chen, E-mail: 1035053766@qq.com; LIU Xuan-xuan, E-mail: 1319273157@qq.com; Correspondence LI Qiang, Tel: +86-516-82189203, Fax: +86-516-82189209, E-mail: instrong@163.com * These authors contributed equally to this study.

Cite this article: 

LI Chen, LIU Xuan-xuan, ABOUELNASR Hesham, MOHAMED HAMED Arisha, KOU Meng, TANG Wei, YAN Hui, WANG Xin, WANG Xiao-xiao, ZHANG Yun-gang, LIU Ya-ju, GAO Run-fei, MA Meng, LI Qiang. 2022. Inhibition of miR397 by STTM technology to increase sweetpotato resistance to SPVD. Journal of Integrative Agriculture, 21(10): 2865-2875.

Apostolova E, Hadjieva N, Ivanova D P, Yahubyan G, Baev V, Gozmanova M. 2021. MicroRNA expression dynamics reshape the cultivar-specific response of pepper (Capsicum annuum L.) to Potato spindle tuber viroid (PSTVd) infection. Scientia Horticulturae, 278, 1–10.
Arora K, Rai A K, Devanna B N, Dubey H, Sharma T R. 2021. Deciphering the role of microRNAs during Pi54 gene mediated Magnaporthe oryzae resistance response in rice. Physiology and Molecular Biology of Plants, 27, 633–647.
Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S. 2011. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. The Plant Cell, 23, 1124–1137.
Blount J W, Korth K L, Masoud S A, Rasmussen S, Lamb C, Dixon R A. 2000. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiology (Bethesda), 122, 107–116.
Cassol D, Cruz F P, Espindola K, Mangeon A, Müller C, Loureiro M E, Corrêa R L, Sachetto-Martins G. 2016. Identification of reference genes for quantitative RT-PCR analysis of microRNAs and mRNAs in castor bean (Ricinus communis L.) under drought stress. Plant Physiology and Biochemistry, 106, 101–107.
Cheng X, Yao J L, Qin M F, Zhang M Y, Allan A C, Wang D F, Wu J. 2018. PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnology Journal, 12950, 1–15.
Du J, Wu R, Liu Z, Sun M, Qing L. 2020. Suppression of nbe-miR1919c–5p expression in Nicotiana benthamiana enhances tobacco curly shoot virus and its betasatellite co-infection. Viruses, 12, 1–13.
Feng J, Liu X, Lai L, Chen J. 2011. Spatio-temporal expression of miRNAs in tomato tissues upon Cucumber mosaic virus and Tomato aspermy virus infections. Acta Biochimica et Biophysica Sinica, 43, 258–266.
Food and Agriculture Organization (FAO). 2019. [2020-12-30]http://www.fao.org/faostat/zh/#data
Franco-Zorrilla J M, Valli A, Todesco M, Mateos I, Puga M I, Rubio-Somoza I, Leyva A, Weigel D, García J A, Paz-Ares J. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39, 1033–1037.
Gross G G. 1977. Biosynthesis of lignin and related monomers. Recent Advances in Phytochemistry, 11, 141–184.
Gupta O P, Meena N L, Sharma I, Sharma P. 2014. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular Biology Reports, 41, 4623–4629.
Gutiérrez D L, Fuentes S, Salazar L F. 2003. Sweetpotato virus disease (SPVD): Distribution, incidence, and effect on sweetpotato yield in Peru. Plant Disease, 87, 297–302.
Hamza N B, Sharma N, Tripathi A, Sanan-Mishra N. 2016. MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expression Patterns, 20, 88–98.
Jones-Rhoades M W, Bartel D P. 2004. Computational identification of plant microRNAs and their targets, including a Stress-Induced miRNA. Molecular Cell, 14, 787–799.
Karyeija R F, Kreuze J F, Gibson R W, Valkonen J P T. 2000. Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweetpotato plants. Virology, 269, 26–36.
Kokkinos C D, Clark C A, McGregor C E, LaBonte D R. 2006. The effect of sweetpotato virus disease and its viral components on gene expression levels in sweetpotato. Journal of the American Society for Horticultural Science, 13, 657–666.
Li D, Zhang X C, Qu H X, Li L, Mao B Z, Xu Y Q, Lin X Y, Luo Z S. 2020. Delaying the biosynthesis of aromatic secondary metabolites in postharvest strawberry fruit exposed to elevated CO2 atmosphere. Food Chemistry, 306, 1–8.
Liu H H, Tian X, Li Y J, Wu C A, Zheng C C. 2008. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14, 836–843.
Liu Q C, Zhai H, Wang Y, Zhang D P. 2001. Efficient plant regeneration from embryogenic suspension cultures of sweetpotato. In Vitro Cellular & Developmental Biology-Plant, 37, 564–567.
Liu Y Z, Jin L F, Yin X X, Peng S A. 2015. Transcript analysis of citrus miRNA397 and its target LAC7 reveals a possible role in response to boron toxicity. Acta Physiologiae Plantarum, 38, 1–7.
Lu S, Li Q, Wei H, Chang M J, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun Y H, Yuan L, Yeh T F, Peszlen I, Ralph J, Sederoff R R, Chiang V L. 2013. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proceedings of the National Academy of Sciences of the United States of America, 110, 10848–10853.
Lu S F, Sun Y H, Shi R, Clark C, Chiang V L. 2005. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. The Plant Cell, 17, 2186–2203.
Luo Y C, Zhou H, Li Y, Chen J, Yang J, Chen Y, Qu L. 2006. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Letters, 580, 5111–5116.
Luo Z S, Xu X L, Yan B F. 2008. Use of 1-methylcyclopropene for alleviating chilling injury and lignification of bamboo shoot (Phyllostachys praecox f. prevernalis) during cold storage. Journal of the Science of Food and Agriculture, 88, 151–157.
Moura J C, Bonine C A, de Oliveira F V J, Dornelas M C, Mazzafera P. 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52, 360–376.
Ngeve J M. 1990. Yield stability and yield depression in sweetpotato cultivars susceptible to the sweet potato virus disease. Journal of Pomology & Horticultural Science, 65, 225–230.
Ngeve J M, Bouwkamp J C. 1991. Effects of sweetpotato virus disease (SPVD) on the yield of sweetpotato genotypes in cameroon. Experimental Agriculture, 27, 221–225.
Nuruzzaman M, Manimekalai R, Sharoni A M, Satoh K, Kondoh H, Ooka H, Kikuchi S. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene, 465, 30–44.
Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D. 2003. Control of leaf morphogenesis by microRNAs. Nature, 425, 257–263.
Patel P, Yadav K, Srivastava A K, Suprasanna P, Ganapathi T R. 2019. Overexpression of native Musa-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana. Scientific Reports, 9, 1–15.
Pourcel L, Routaboul J, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. 2005. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. The Plant Cell, 17, 2966–2980.
Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P. 2002. MicroRNAs in Plants, 16, 1616–1626.
Teotia S, Peng T, Liu H, Qiao M, Tang G. 2015. Targeting microRNAs for destruction in crop plants by short tandem target mimic (STTM). In: International Plant & Animal Genome XXIII. San Diego, CA.
Sattler S E, Funnell-Harris D L. 2013. Modifying lignin to improve bioenergy feedstocks: Strengthening the barrier against pathogens? Frontiers in Plant Science, 70, 1–8.
Sha A, Zhao J, Yin K, Tang Y, Wang Y, Wei X, Hong Y, Liu Y. 2014. Virus-based microRNA silencing in plants. Plant Physiology, 164, 36–47.
Shen Y, Zhang Z, Lin H, Liu H, Chen J, Peng H, Cao M, Rong T, Pan G. 2011. Cytoplasmic male sterility-regulated novel microRNAs from maize. Functional & Integrative Genomics, 11, 179–191.
Sun X M, Fan G T, Su L Y, Wang W J, Liang Z C, Li S H, Xin H P. 2015. Identification of cold-inducible microRNAs in grapevine. Frontiers in Plant Science, 6, 1–13.
Sunkar R. 2004. Novel and stress-regulated MicroRNAs and other small RNAs from Arabidopsis. Plant Cell, 16, 2001–2019.
Tang G, Tang X. 2013. Short tandem target mimic: A long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals. Journal of Genetics and Genomics, 40, 291–296.
Teotia S, Tang G. 2017. Silencing of stress-regulated miRNAs in plants by short tandem target mimic (STTM) approach. Methods in Molecular Biology, 1631, 337–348.
Voelker S L, Lachenbruch B, Meinzer F C, Jourdes M, Ki C, Patten A M, Davin L B, Lewis N G, Tuskan G A, Gunter L, Decker S R, Selig M J, Sykes R, Himmel M E, Kitin P, Shevchenko O, Strauss S H. 2010. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiology, 154, 874–886.
Wang C, Zhang S, Yu Y, Luo Y, Liu Q, Ju C, Zhang Y, Qu L, Lucas W J, Wang X, Chen Y. 2014. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnology Journal, 12, 1132–1142.
Wang J F, Zhou H, Chen Y Q, Luo Q J, Qu L H. 2004. Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Research, 32, 1688–1695.
Wang L, Mai Y, Zhang Y, Luo Q, Yang H. 2010. MicroRNA171c-Targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Molecular Plant, 3, 794–806.
Wuyts N, Lognay G, Swennen R, Waele D D. 2006. Nematode infection and reproduction in transgenic and mutant Arabidopsis and tobacco with an altered phenylpropanoid metabolism. Journal of Experimental Botany, 57, 2825–2835.
Xia Z, Zhao Z, Li M, Chen L, Jiao Z, Wu Y, Zhou T, Yu W, Fan Z. 2018. Identification of miRNAs and their targets in maize in response to Sugarcane mosaic virus infection. Plant Physiology and Biochemistry, 125, 143–152.
Xu Y, Zhu S, Liu F, Wang W, Wang X, Han G, Cheng B. 2018. Identification of arbuscular mycorrhiza fungi responsive microRNAs and their regulatory network in maize. International Journal of Molecular Sciences, 19, 1–13.
Xu Z, Zhong S, Li X, Li W, Rothstein S J, Zhang S, Bi Y, Xie C. 2011. Genome-Wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS ONE, 6, 1–9.
Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. 2012. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. The Plant Cell, 24, 415–427.
Yu B, Zhai H, Wang Y, Zang N, He S, Liu Q. 2007. Efficient Agrobacterium tumefaciens-mediated transformation using embryogenic suspension cultures in sweetpotato, Ipomoea batatas (L.) Lam. Plant Cell, Tissue and Organ Culture, 90, 265–273.
Yu X, Gong H, Cao L, Hou Y, Qu S. 2020. MicroRNA397b negatively regulates resistance of Malus hupehensis to Botryosphaeria dothidea by modulating MhLAC7 involved in lignin biosynthesis. Plant Science, 292, 1–11.
Zang N, Zhai H, Gao S, Chen W, He S Z, Liu Q C. 2009. Efficient production of transgenic plants using the bar gene for herbicide resistance in sweetpotato. Scientia Horticulturae, 122, 649–653.
Zhang J, Zhang H, Srivastava A K, Pan Y, Bai J, Fang J, Shi H, Zhu J. 2018. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiology, 176, 2082–2094.
Zhang X X, Wang X F, Lin J C, Yu J C, Huang L F, Dong Z Y. 2019. Sweetpotato virus diseases (SPVD): Research progress. Chinese Agricultural Science Bulletin, 35, 118–126.
Zhang Y, Yu Y, Wang C, Li Z, Liu Q, Xu J, Liao J, Wang X, Qu L, Chen F, Xin P, Yan C, Chu J, Li H, Chen Y. 2013. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology, 31, 848–852.
Zhao X Y, Pang M L, Zhao Q, Ren Y R, Hao Y J, You C X. 2015. Cloning and expression Analysis of tomato LeLAC (miR397) gene. Acta Horticulturae Sinica, 42, 1285–1298. (in Chinese)
Zhao Y, Lin S, Qiu Z, Cao D, Wen J, Deng X, Wang X, Lin J, Li X. 2015. MicroRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiology, 4, 2539–2552.
Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L. 2010. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 61, 4157–4168.

[1] XIAO Yang-yang, QIAN Jia-jia, HOU Xing-liang, ZENG Lan-ting, LIU Xu, MEI Guo-guo, LIAO Yin-yin.

Diurnal emission of herbivore-induced (Z)-3-hexenyl acetate and allo-ocimene activates sweet potato defense responses to sweet potato weevils [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1782-1796.

[2] LI Rui-jie, ZHAI Hong, HE Shao-zhen, ZHANG Huan, ZHAO Ning, LIU Qing-chang. A geranylgeranyl pyrophosphate synthase gene, IbGGPS, increases carotenoid contents in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2538-2546.
[3] ZHU Hong, ZHOU Yuan-yuan, ZHAI Hong, HE Shao-zhen, ZHAO Ning, LIU Qing-chang. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato[J]. >Journal of Integrative Agriculture, 2019, 18(1): 9-24.
[4] REN Zhi-tong, ZHAO Hong-yuan, HE Shao-zhen, ZHAI Hong, ZHAO Ning, LIU Qing-chang. Overexpression of IbSnRK1 enhances nitrogen uptake and carbon assimilation in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2018, 17(2): 296-305.
[5] MENG Yu-sha, ZHAO Ning, LI Hui, ZHAI Hong, HE Shao-zhen, LIU Qing-chang. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas (L.) Lam.) varieties[J]. >Journal of Integrative Agriculture, 2018, 17(01): 86-93.
[6] ZHANG Huan, ZHANG Qian, WANG Yan-nan, LI Yan, ZHAI Hong, LIU Qing-chang, HE Shao-zhen. Characterization of salt tolerance and Fusarium wilt resistance of a sweetpotato mutant[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1946-1955.
[7] KOU Meng, XU Jia-lei, LI Qiang, LIU Ya-ju, WANG Xin, TANG Wei, YAN Hui, ZHANG Yun-gang, MA Dai-fu. Development of SNP markers using RNA-seq technology and tetra-primer ARMS-PCR in sweetpotato[J]. >Journal of Integrative Agriculture, 2017, 16(02): 464-470.
[8] WANG Yan-nan, LI Yan, ZHANG Huan, ZHAI Hong, LIU Qing-chang, HE Shao-zhen. A plastidic ATP/ADP transporter gene, IbAATP, increases starch and amylose contents and alters starch structure in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2016, 15(9): 1968-1982.
[9] WANG Fei-bing, ZHAI Hong, AN Yan-yan, SI Zeng-zhi, HE Shao-zhen, LIU Qing-chang. Overexpression of IbMIPS1 gene enhances salt tolerance in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2016, 15(2): 271-281.
[10] YANG Xin-sun, SU Wen-jin, WANG Lian-jun, LEI Jian, CHAI Sha-sha, LIU Qing-chang. Molecular diversity and genetic structure of 380 sweetpotato accessions as revealed by SSR markers[J]. >Journal of Integrative Agriculture, 2015, 14(4): 633-641.
[11] LIU De-gao, ZHAO Ning, ZHAI Hong, YU Xiao-xia, JIE Qin, WANG Lian-jun, HE Shao-zhen, LIU Qing-chang. AFLP Fingerprinting and Genetic Diversity of Main Sweetpotato Varieties in China[J]. >Journal of Integrative Agriculture, 2012, 12(9): 1424-1433.
[12] GAO Shang, ZHAI Hong, HE Shao-zhen, LIU Qing-chang. Overexpression of SOS Genes Enhanced Salt Tolerance in Sweetpotato[J]. >Journal of Integrative Agriculture, 2012, 12(3): 378-386.
No Suggested Reading articles found!