Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (1): 212-226    DOI: 10.1016/S2095-3119(20)63268-3
Special Issue: 动物科学合辑Animal Science
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Switches in transcriptome functions during seven skeletal muscle development stages from fetus to kid in Capra hircus
LING Ying-hui1, 2*, ZHENG Qi1, 3*, JING Jing1, 3, SUI Meng-hua1, 3, ZHU Lu1, 3, LI Yun-sheng1, 3, ZHANG Yun-hai1, 3, LIU Ya1, 3, FANG Fu-gui1, 3, ZHANG Xiao-rong1, 3 
1 College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R.China
2 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
3 Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      


Skeletal muscle accounts for about 40% of mammalian body weight, the development of which is a dynamic, complex and precisely regulated process that is critical for meat production. We here described the transcriptome expression profile in 21 goat samples collected at 7 growth stages from fetus to kid, including fetal 45 (F45), 65 (F65), 90 (F90), 120 (F120), and 135 (F135) days, and birth 1 (B1) day and 90 (B90) days kids.  Paraffin sections combined with RNA-seq data of the 7 stages divided the transcriptomic functions of skeletal muscle into 4 states: before F90, F120, F135 and B1, and B90.  And the dynamic expression of all 4 793 differentially expressed genes (DEGs) was identified.  Furthermore, DEGs were clustered by weighted gene correlation network analysis into 4 modules (turquoise, grey, blue and brown) that corresponded to these 4 states.  Functional and pathway analysis indicated that the active genes in the stages before F90 (turquoise) were closely related to skeletal muscle proliferation.  The DEGs in the F120-related module (grey) were found to participate in the regulation of skeletal muscle structure and skeletal muscle development by regulating tRNA.  The brown module (F135 and B1) regulated fatty acid biological processes to maintain the normal development of muscle cells.  The DEGs of B90 high correlation module (blue) were involved the strengthening and power of skeletal muscle through the regulation of actin filaments and tropomyosin.  Our current data thus revealed the internal functional conversion of the goat skeletal muscle in the growth from fetus to kid.  The results provided a theoretical basis for analyzing the involvement of mRNA in skeletal muscle development.
Keywords:  mRNA        goat (Capra hircus)        transcriptome        skeletal muscle  
Received: 13 February 2020   Accepted:
Fund: This research was supported by the National Natural Science Foundation of China (31772566 and 31972629), the Anhui Key Research and Development Program, China (1804a07020128), and the Anhui Province Academic and Technology Leader Reserve Talent Project, China (2019H206). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Corresponding Authors:  Correspondence LING Ying-hui, Tel: +86-551-65785928, E-mail:   
About author:  * These authors contributed equally to this study.

Cite this article: 

LING Ying-hui, ZHENG Qi, JING Jing, SUI Meng-hua, ZHU Lu, LI Yun-sheng, ZHANG Yun-hai, LIU Ya, FANG Fu-gui, ZHANG Xiao-rong . 2021. Switches in transcriptome functions during seven skeletal muscle development stages from fetus to kid in Capra hircus. Journal of Integrative Agriculture, 20(1): 212-226.

Al-Shanti N, Stewart C E. 2009. Ca2+/calmodulin-dependent transcriptional pathways: Potential mediators of skeletal muscle growth and development. Biological Reviews of the Cambridge Philosophical Society, 84, 637–652.
Bakay M, Zhao P, Chen J, Hoffman E P. 2002. A web-accessible complete transcriptome of normal human and DMD muscle. Neuromuscular Disorders (NMD), 12(Suppl. 1), S125–S141.
Berger J, Tarakci H, Berger S, Li M, Hall T E, Arner A, Currie P D. 2014. Loss of Tropomodulin4 in the zebrafish mutant träge causes cytoplasmic rod formation and muscle weakness reminiscent of nemaline myopathy. Disease Models & Mechanisms, 7, 1407–1415.
Boufroura F Z, Le Bachelier C, Tomkiewicz-Raulet C, Schlemmer D, Benoist J F, Grondin P, Lamotte Y, Mirguet O, Mouillet-Richard S, Bastin J, Djouadi F. 2018. A new AMPK activator, GSK773, corrects fatty acid oxidation and differentiation defect in CPT2-deficient myotubes. Human Molecular Genetics, 27, 3417–3433.
Buckingham M, Relaix F. 2007. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annual Review of Cell and Developmental Biology, 23, 645–673.
Chal J, Pourquie O. 2017. Making muscle: Skeletal myogenesis in vivo and in vitro. Development, 144, 2104–2122.
Davidovic L, Durand N, Khalfallah O, Tabet R, Barbry P, Mari B, Sacconi S, Moine H, Bardoni B. 2013. A novel role for the RNA-binding protein FXR1P in myoblasts cell-cycle progression by modulating p21/Cdkn1a/Cip1/Waf1 mRNA stability. PLoS Genetics, 9, e1003367.
Endo T. 2015. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone, 80, 2–13.
Ernst J, Bar-Joseph Z. 2006. STEM: A tool for the analysis of short time series gene expression data. BMC Bioinformatics, 7, 191.
Ganassi M, Badodi S, Ortuste Quiroga H P, Zammit P S, Hinits Y, Hughes S M. 2018. Myogenin promotes myocyte fusion to balance fibre number and size. Nature Communications, 9, 4232.
Gesek M, Murawska D, Otrocka-Domagala I, Michalska K, Zawacka M. 2019. Effects of caponization and age on the histology, lipid localization, and fiber diameter in muscles from Leghorn cockerels. Poultry Science, 98, 1354–1362.
Guan D, Luo N, Tan X, Zhao Z, Huang Y, Na R, Zhang J, Zhao Y. 2016. Scanning of selection signature provides a glimpse into important economic traits in goats (Capra hircus). Scientific Reports, 6, 36372.
van Hall G. 2015. The physiological regulation of skeletal muscle fatty acid supply and oxidation during moderate-intensity exercise. Sports Medicine, 45(Suppl.1), S23–S32.
Haldar M, Karan G, Tvrdik P, Capecchi M R. 2008. Two cell lineages, myf5 and myf5-independent, participate in mouse skeletal myogenesis. Developmental Cell, 14, 437–445.
Jana S, Levengood S K, Zhang M. 2016. Anisotropic materials for skeletal-muscle-tissue engineering. Advanced Materials, 28, 10588–10612.
Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.
Langmead B, Trapnell C, Pop M, Salzberg S L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25.
Liapi E, van Bilsen M, Verjans R, Schroen B. 2019. tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1867, 118465.
Liu L, Charville G W, Cheung T H, Yoo B, Santos P J, Schroeder M, Rando T A. 2018. Impaired Notch signaling leads to a decrease in p53 activity and mitotic catastrophe in aged muscle stem cells. Cell Stem Cell, 23, 544–556.
Llano-Diez M, Fury W, Okamoto H, Bai Y, Gromada J, Larsson L. 2019. RNA-sequencing reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and chaperone expression in patients with critical illness myopathy. Skeletal Muscle, 9, 9.
Mao X, Cai T, Olyarchuk J G, Wei L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21, 3787–3793.
Murach K A, Fry C S, Kirby T J, Jackson J R, Lee J D, White S H, Dupont-Versteegden E E, McCarthy J J, Peterson C A. 2018. Starring or supporting role? Satellite cells and skeletal muscle fiber size regulation. Physiology, 33, 26–38.
NRC (National Research Council). 2011. Guide for the Care and Use of Laboratory Animals. 18th ed. The National Academies Press, Washington, D.C.
NY/T816-2004. 2006. Hunan feed. National Standard of the People’s Republic of China. (in Chinese)
Ovilo C, Benitez R, Fernandez A, Nunez Y, Ayuso M, Fernandez A I, Rodriguez C, Isabel B, Rey A I, Lopez-Bote C, Silio L. 2014. Longissimus dorsi transcriptome analysis of purebred and crossbred Iberian pigs differing in muscle characteristics. BMC Genomics, 15, 413.
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11, 1650–1667.
Ren H, Li L, Su H, Xu L, Wei C, Zhang L, Li H, Liu W, Du L. 2011. Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep. BMC Genomics, 12, 411.
Shchelochkov O, Wong L J, Shaibani A, Shinawi M. 2009. A typical presentation of VLCAD deficiency associated with a novel ACADVL splicing mutation. Muscle & Nerve, 39, 374–382.
Shen S, Park J W, Lu Z X, Lin L, Henry M D, Wu Y N, Zhou Q, Xing Y. 2014. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proceedings of the National Academy of Sciences of the United States of America, 111, E5593–E5601.
Siqin Q, Nishiumi T, Yamada T, Wang S, Liu W, Wu R, Borjigin G. 2017. Relationships among muscle fiber type composition, fiber diameter and MRF gene expression in different skeletal muscles of naturally grazing Wuzhumuqin sheep during postnatal development. Animal Science Journal, 88, 2033–2043.
Svitkina T. 2018. The actin cytoskeleton and actin-based motility. Cold Spring Harbor Perspectives in Biology, 10, a018267.
Teng K, Wei S, Zhang C, Chen J, Chen J, Xiao K, Liu J, Dai M, Guan X, Yun J, Xie D. 2019. KIFC1 is activated by TCF-4 and promotes hepatocellular carcinoma pathogenesis by regulating HMGA1 transcriptional activity. Journal of Experimental & Clinical Cancer Research (CR), 38, 329.
Terry E E, Zhang X, Hoffmann C, Hughes L D, Lewis S A, Li J, Wallace M J, Riley L A, Douglas C M, Gutierrez-Monreal M A, Lahens N F, Gong M C, Andrade F, Esser K A, Hughes M E. 2018. Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues. eLife, 7, e34613.
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511–515.
Wang H, Noulet F, Edom-Vovard F, Tozer S, Le Grand F, Duprez D. 2010. Bmp signaling at the tips of skeletal muscles regulates the number of fetal muscle progenitors and satellite cells during development. Developmental Cell, 18, 643–654.
Wang J, Wang S, Sun P, Cao F, Li H, Sun J, Peng M, Liu W, Shi P. 2018. Iron depletion participates in the suppression of cell proliferation induced by lipin1 overexpression. Metallomics, 10, 1307–1314.
Wank V, Fischer M S, Walter B, Bauer R. 2006. Muscle growth and fiber type composition in hind limb muscles during postnatal development in pigs. Cells, Tissues, Organs, 182, 171–181.
Xu J, Liu D, Yin H, Tong H, Li S, Yan Y. 2018. Fatty acids promote bovine skeletal muscle satellite cell differentiation by regulating ELOVL3 expression. Cell and Tissue Research, 373, 499–508.
Yang Y, Zhu M, Fan X, Yao Y, Yan J, Tang Y, Liu S, Li K, Tang Z. 2019. Developmental atlas of the RNA editome in Sus scrofa skeletal muscle. DNA Research, 26, 261–272.
Ying H, Xu Z, Chen M, Zhou S, Liang X, Cai X. 2018. Overexpression of Zwint predicts poor prognosis and promotes the proliferation of hepatocellular carcinoma by regulating cell-cycle-related proteins. Oncotargets & Therapy, 11, 689–702.
Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11, R14.
Yuen M, Sandaradura S A, Dowling J J, Kostyukova A S, Moroz N, Quinlan K G, Lehtokari V L, Ravenscroft G, Todd E J, Ceyhan-Birsoy O, Gokhin D S, Maluenda J, Lek M, Nolent F, Pappas C T, Novak S M, D’Amico A, Malfatti E, Thomas B P, Gabriel S B, et al. 2014. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. The Journal of Clinical Investigation, 124, 4693–4708.
Zhao L, Pascual F, Bacudio L, Suchanek A L, Young P A, Li L O, Martin S A, Camporez J P, Perry R J, Shulman G I, Klett E L, Coleman R A. 2019. Defective fatty acid oxidation in mice with muscle-specific acyl-CoA synthetase 1 deficiency increases amino acid use and impairs muscle function. The Journal of Biological Chemistry, 294, 8819–8833.
[1] FENG Xi-kang, XIE Chun-di, LI Yong-yao, WANG Zi-shuai, BAI Li-jing. SCSMRD: A database for single-cell skeletal muscle regeneration[J]. >Journal of Integrative Agriculture, 2023, 22(3): 864-871.
[2] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[3] WANG Bo, HUANG Tian-yu, YAO Yuan, Frederic FRANCIS, YAN Chun-cai, WANG Gui-rong, WANG Bing. A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2042-2054.
[4] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[5] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[6] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[7] WU Tong, FENG Shu-yan, YANG Qi-hang, Preetida J BHETARIYA, GONG Ke, CUI Chun-lin, SONG Jie, PING Xiao-rui, PEI Qiao-ying, YU Tong, SONG Xiao-ming. Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1807-1818.
[8] SUN Li-na, LIU Yan-di, ZHANG Huai-jiang, YAN Wen-tao, YUE Qiang, QIU Gui-sheng. Molecular characterization of the ryanodine receptor from Adoxophyes orana and its response to lethal and sublethal doses of chlorantraniliprole[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1585-1595.
[9] ZHAO Juan, LIU Ting, LIU Wei-cheng, ZHANG Dian-peng, DONG Dan, WU Hui-ling, ZHANG Tao-tao, LIU De-wen. Transcriptomic insights into growth promotion effect of Trichoderma afroharzianum TM2-4 microbial agent on tomato plants[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1266-1276.
[10] CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3199-3208.
[11] FU Fang-fang, PENG Ying-shu, WANG Gui-bin, Yousry A. EL-KASSABY, CAO Fu-liang. Integrative analysis of the metabolome and transcriptome reveals seed germination mechanism in Punica granatum L.[J]. >Journal of Integrative Agriculture, 2021, 20(1): 132-146.
[12] LAN Hao, ZHANG Zhan-feng, WU Jun, CAO He-he, LIU Tong-xian. Performance and transcriptomic response of the English grain aphid, Sitobion avenae, feeding on resistant and susceptible wheat cultivars[J]. >Journal of Integrative Agriculture, 2021, 20(1): 178-190.
[13] LI Cen-cen, YU Shu-long, REN Hai-feng, WU Wei, WANG Ya-ling, HAN Qiu, XU Hai-xia, XU Yong-jie, ZHANG Peng-peng. Identification and functional prediction of long intergenic noncoding RNAs in fetal porcine longissimus dorsi muscle[J]. >Journal of Integrative Agriculture, 2021, 20(1): 201-211.
[14] ZHANG Yong-sheng, LU Dan, LIU Yu-wen, YI Guo-qiang, TANG Zhong-lin . The untold story between enhancers and skeletal muscle development[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2137-2149.
[15] SHAN Yan-ju, JI Gai-ge, ZOU Jian-min, ZHANG Ming, TU Yun-jie, LIU Yi-fan, JU Xiao-jun, SHU Jing-ting. PGC-1α differentially regulates the mRNA expression profiles of genes related to myofiber type specificity in chicken[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2083-2094.
No Suggested Reading articles found!