Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Integrating a novel irrigation approximation method with a process-based remote sensing model to estimate multi-years' winter wheat yield over the North China Plain
ZHANG Sha, YANG Shan-shan, WANG Jing-wen, WU Xi-fang, Malak HENCHIRI, Tehseen JAVED, ZHANG Jia-hua, BAI Yun
2023, 22 (9): 2865-2881.   DOI: 10.1016/j.jia.2023.02.036
Abstract179)      PDF in ScienceDirect      

Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.  However, using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.  Thus, we proposed a new approach to approximating irrigations of winter wheat over the North China Plain (NCP), where irrigation occurs extensively during the winter wheat growing season.  This approach used irrigation pattern parameters (IPPs) to define the irrigation frequency and timing.  Then, they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat (PRYM–Wheat), to improve the regional estimates of winter wheat over the NCP.  The IPPs were determined using statistical yield data of reference years (2010–2015) over the NCP.  Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield, with an increase and decrease in the correlation coefficient (R) and root mean square error (RMSE) of 0.15 (about 37%) and 0.90 t ha–1 (about 41%), respectively.  The data in validation years (2001–2009 and 2016–2019) were used to validate PRYM–Wheat.  In addition, our findings also showed R (RMSE) of 0.80 (0.62 t ha–1) on a site level, 0.61 (0.91 t ha–1) for Hebei Province on a county level, 0.73 (0.97 t ha–1) for Henan Province on a county level, and 0.55 (0.75 t ha–1) for Shandong Province on a city level.  Overall, PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years, providing a scientific basis for ensuring regional food security.

Reference | Related Articles | Metrics
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil
CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi
2023, 22 (6): 1870-1882.   DOI: 10.1016/j.jia.2023.02.025
Abstract219)      PDF in ScienceDirect      

Soil salinization is a critical environmental issue restricting agricultural production.  Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.  However, the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.  Therefore, a four-year (2015–2018) field experiment was conducted with four levels (i.e., 0, 6, 12 and 18 Mg ha–1) of straw returned as an interlayer.  Compared with no straw interlayer (CK), straw addition increased SOC concentration by 14–32 and 11–57% in the 20–40 and 40–60 cm soil layers, respectively.  The increases in soil TN concentration (8–22 and 6–34% in the 20–40 and 40–60 cm soil layers, respectively) were lower than that for SOC concentration, which led to increased soil C:N ratio in the 20–60 cm soil depth.  Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm), which promoted uniform distributions of SOC and TN in the soil profile.  Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.  Generally, compared with other treatments, the application of 12 Mg ha–1 straw had higher SOC, TN and C:N ratio, and lower soil stratification ratio in the 2015–2017 period.  The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years, and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.

Reference | Related Articles | Metrics
Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton
TIAN Xiao-min, HAN Peng, WANG Jing, SHAO Pan-xia, AN Qiu-shuang, Nurimanguli AINI, YANG Qing-yong, YOU Chun-yuan, LIN Hai-rong, ZHU Long-fu, PAN Zhen-yuan, NIE Xin-hui
2023, 22 (5): 1324-1337.   DOI: 10.1016/j.jia.2022.08.034
Abstract398)      PDF in ScienceDirect      

Lignin metabolism plays a pivotal role in plant defense against pathogens and is always positively correlated as a response to pathogen infection.  Thus, understanding resistance genes against pathogens in plants depends on a genetic analysis of lignin response.  In the study, eight upland cotton lines were used to construct a multi-parent advanced generation intercross (MAGIC) population (n=280), which exhibited peculiar characteristics from the convergence of various alleles coding for advantageous traits.  To measure the lignin response to Verticillium wilt (LRVW), artificial disease nursery (ADN) and rotation nursery (RN) were prepared for MAGIC population planting in four environments.  The stem lignin contents were collected, and the LRVW was measured with the lignin value of ADN/RN in each environment, which showed great variation.  A total of 9323 high-quality single-nucleotide polymorphism (SNP) markers obtained from the Cotton-SNP63K array were employed for genotyping the MAGIC population.  The SNPs were distributed through the whole genome with 4.78 SNP/Mb density, ranging from 1.14 (ChrA06) to 10.08 (ChrD08).  A genome-wide association study was performed using a mixed linear model (MLM) for LRVW, and three stable quantitative trait loci (QTLs), qLRVW-A04, qLRVW-A10 and qLRVW-D05, were identified in more than two environments.  Two key candidate genes, Ghi_D05G01046 and Ghi_D05G01221, were selected within the QTLs through the combination of variations in the coding sequence, induced expression patterns, and function annotations, both of which presented nonsynonymous mutations in coding regions and were strongly induced by Verticillium dahliae. Ghi_D05G01046 encodes a leucine-rich extensin (LRx) protein, which is involved in Arabidopsis cell wall biosynthesis and organization.  Ghi_D05G01221 encodes a transcriptional co-repressor novel interactor of jaz (NINJA), which functions in the jasmonic acid (JA) signaling pathway.  In summary, the study creates valuable genetic resources for breeding and QTL mapping and opens up a new perspective to uncover the genetic basis of VW resistance in upland cotton.

Reference | Related Articles | Metrics
Review on the fully mulched ridge–furrow system for sustainable maize production on the semi-arid Loess Plateau
WANG Jin-bin, XIE Jun-hong, LI Ling-ling, ADINGO Samuel
2023, 22 (5): 1277-1290.   DOI: 10.1016/j.jia.2022.09.023
Abstract349)      PDF in ScienceDirect      

The fully mulched ridge–furrow (FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize (Zea mays L.) productivity and rainfall use efficiency.  However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run.  Therefore, it is necessary to optimize the system for the sustainable development of agriculture.  The development, yield-increasing mechanisms, negative impacts, optimization, and their relations in the FMRF system are reviewed in this paper.  We suggest using grain and forage maize varieties instead of regular maize; mulching plastic film in autumn or leaving the mulch after maize harvesting until the next spring, and then removing the old film and mulching new film; combining reduced/no-tillage with straw return; utilizing crop rotation or intercropping with winter canola (Brassica campestris L.), millet (Setaria italica), or oilseed flax (Linum usitatissimum L.); reducing nitrogen fertilizer and partially replacing chemical fertilizer with organic fertilizer; using biodegradable or weather-resistant film; and implementing mechanized production.  These integrations help to establish an environmentally friendly, high quality, and sustainable agricultural system, promote high-quality development of dryland farming, and create new opportunities for agricultural development in the semi-arid Loess Plateau.

Reference | Related Articles | Metrics
Effects of LPA on the development of sheep in vitro fertilized embryos and attempt to establish sheep embryonic stem cells
ZHANG Xue-min, HUANG Xiang-hua, WANG Jing, XING Ying, LIU Fang, XIANG Jin-zhu, WANG Han-ning, YUE Yong-li, LI Xue-ling
2023, 22 (4): 1142-1158.   DOI: 10.1016/j.jia.2022.08.111
Abstract232)      PDF in ScienceDirect      

Lysophosphatidic acid (LPA) is a small molecule glycerophospholipid, which regulates multiple downstream signalling pathways through G-protein-coupled receptors to achieve numerous functions on oocyte maturation and embryo development.  In this study, sheep in vitro fertilized embryos were applied to investigate the effects of LPA on early embryos development and embryonic stem cell establishment.  At first, the maturation medium containing estrus female sheep serum and synthetic oviduct fluid (SOF) were optimized for sheep IVF, and then the effects of LPA were investigated.  From 0.1 to 10 μmol L–1, LPA had no significant effect on the cleavage rate (P>0.05), but the maturation rate and blastocyst rate increased dependently with LPA concentration (P<0.05), and the blastocyst morphology was normal.  When the LPA concentration was 15 μmol L–1, the maturation rate, cleavage rate and blastocyst rate decreased significantly (P<0.05), and the blastocyst exhibited abnormal morphology and could not develop into high-quality blastocyst.  Besides, the exogenous LPA increases the expression of LPAR2, LPAR4, TE-related gene CDX-2

and pluripotency-related gene OCT-4 in sheep early IVF embryos with the raise of LPA concentration from 0.1 to 10 μmol

L–1.  The expression of LPAR2, LPAR4, CDX-2 and OCT-4 from the LPA-0.1 μmol L–1 to LPA-10 μmol L–1 groups in early embryos were extremely significant (P<0.05), while the expression of these genes significantly decreased in 15 μmol L–1 LPA-treated embryos compared with LPA-10 μmol L–1 group (P<0.05).  The inner cell mass in 15 μmol L–1 LPA-treated embryos was also disturbed, and the blastocysts formation was abnormal.  Secondly, the sheep IVF blastocysts were applied to establish embryonic stem cells.  The results showed that LPA made the blastocyst inoculated cells grow towards TSC-like cells.  They enhanced the fluorescence intensity and mRNA abundance of OCT-4 and CDX-2 as the concentration increased from 0 to 10 μmol L–1, while 15 μmol L–1 LPA decreased OCT-4 and CDX-2 expression in the derived cells.  The expression of CDX-2 and OCT-4 in the blastocyst inoculated cells of LPA-1 μmol L–1 group and LPA-10 μmol L–1 group extremely significantly increased (P<0.05), but there was significant decrease in LPA-15 μmol L–1 group compared with LPA-10 μmol L–1 group (P<0.05).  Meanwhile, the protein expression of LPAR2 and LPAR4 remarkably increased after treatment of LPA at 10 μmol L–1 concentration.  This study references the IVF embryo production and embryonic stem cell research of domestic animals. 

Reference | Related Articles | Metrics
Physiological and biochemical characteristics of boscalid resistant isolates of Sclerotinia sclerotiorum from asparagus lettuce
SHI Dong-ya, LI Feng-jie, ZHANG Zhi-hui, XU Qiao-nan, CAO Ying-ying, Jane Ifunanya MBADIANYA, LI Xin, WANG Jin, CHEN Chang-jun
2023, 22 (12): 3694-3708.   DOI: 10.1016/j.jia.2023.09.024
Abstract318)      PDF in ScienceDirect      

Laboratory mutants of Sclerotinia sclerotiorum (Lib) de Bary, resistant to boscalid, have been extensively characterized.  However, the resistance situation in the lettuce field remains largely elusive.  In this study, among the 172 Ssclerotiorum isolates collected from asparagus lettuce field in Jiangsu Province, China, 132 isolates (76.74%) exhibited low-level resistance to boscalid (BosLR), with a discriminatory dose of 5 μg mL–1.  In comparison to the boscalid-sensitive (BosS) isolates, most BosLR isolates demonstrated a slightly superior biological fitness, as evidenced by data on mycelial growth, sclerotium production and pathogenicity.  Moreover, most BosLR isolates showed comparable levels of oxalic acid (OA) accumulation, increased exopolysaccharide (EPS) content and reduced membrane permeability when compared to the BosS isolates.  Nevertheless, their responses to distinct stress factors diverged significantly.  Furthermore, the effectiveness of boscalid in controlling BosLR isolates on radish was diminished compared to its efficacy on BosS isolates.  Genetic mutations were identified in the SDH genes of BosLR isolates, revealing the existence of three resistant genotypes: I (A11V at SDHB, SDHBA11V), II (Q38R at SDHC, SDHCQ38R) and III (SDHBA11V+SDHCQ38R).  Importantly, no cross-resistance was observed between boscalid and other fungicides such as thifluzamide, pydiflumetofen, fluazinam, or tebuconazole.  Our molecular docking analysis indicated that the docking total score (DTS) of the type I resistant isolates (1.3993) was lower than that of the sensitive isolates (1.7499), implying a reduced affinity between SDHB and boscalid as a potential mechanism underlying the boscalid resistance in Ssclerotiorum.  These findings contribute to an enhanced comprehension of boscalid’s mode of action and furnish valuable insights into the management of boscalid resistance.

Reference | Related Articles | Metrics
Virucidal activity of MICRO-CHEM PLUS against African swine fever virus
JIANG Cheng-gang, SUN Ying, ZHANG Fan, AI Xin, LU Ming, QIN Jia-lin, ZHANG Xian-feng, WANG Jing-fei, BU Zhi-gao, ZHAO Dong-ming, HE Xi-jun
2023, 22 (11): 3560-3563.   DOI: 10.1016/j.jia.2023.09.021
Abstract270)      PDF in ScienceDirect      
Reference | Related Articles | Metrics
Optimizing water management practice to increase potato yield and water use efficiency in North China
LI Yang, WANG Jing, FANG Quan-xiao, HU Qi, HUANG Ming-xia, CHEN Ren-wei, ZHANG Jun, HUANG Bin-xiang, PAN Zhi-hua, PAN Xue-biao
2023, 22 (10): 3182-3192.   DOI: 10.1016/j.jia.2023.04.027
Abstract141)      PDF in ScienceDirect      

Potato is one of the staple food crops in North China.  However, potato production in this region is threatened by the low amount and high spatial-temporal variation of precipitation.  Increasing yield and water use efficiency (WUE) of potato by various water management practices under water resource limitation is of great importance for ensuring food security in China.  However, the contributions of different water management practices to yield and WUE of potato have been rarely investigated across North China’s potato planting region.  Based on meta-analysis of field experiments from the literature and model simulation, this study quantified the potential yields of potatoes without water and fertilizer limitation, and yield under irrigated and rainfed conditions, and the corresponding WUEs across four potato planting regions including the Da Hinggan Mountains (DH), the Foothills of Yanshan hilly (YH), the North foot of the Yinshan Mountains (YM), and the Loess Plateau (LP) in North China.  Simulated average potential potato tuber dry weight yield by the APSIM-Potato Model was 12.4 t ha–1 for the YH region, 11.4 t ha–1 for the YM region, 11.2 t ha–1 for the DH region, and 10.7 t ha–1 for the LP region, respectively.  Observed rainfed potato tuber dry weight yield accounted for 61, 30, 28 and 24% of the potential yield in the DH, YH, YM, and LP regions.  The maximum WUE of 2.2 kg m–3 in the YH region, 2.1 kg m–3 in the DH region, 1.9 kg m–3 in the YM region and 1.9 kg m–3 in the LP region was achieved under the potential yield level.  Ridge-furrow planting could boost yield by 8–49% and WUE by 2–36% while ridge-furrow planting with film mulching could boost yield by 35–89% and WUE by 7–57% across North China.  Our study demonstrates that there is a large potential to increase yield and WUE simultaneously by combining ridge-furrow planting with film mulching and supplemental irrigation in different potato planting regions with limited water resources.

Reference | Related Articles | Metrics
Modelling the crop yield gap with a remote sensing-based process model: A case study of winter wheat in the North China Plain
YANG Xu, ZHANG Jia-hua, YANG Shan-shan, WANG Jing-wen, BAI Yun, ZHANG Sha
2023, 22 (10): 2993-3005.   DOI: 10.1016/j.jia.2023.02.003
Abstract238)      PDF in ScienceDirect      

Understanding the spatial distribution of the crop yield gap (YG) is essential for improving crop yields.  Recent studies have typically focused on the site scale, which may lead to considerable uncertainties when scaled to the regional scale.  To mitigate this issue, this study used a process-based and remote sensing driven crop yield model for winter wheat (PRYM-Wheat), which was derived from the boreal ecosystem productivity simulator (BEPS), to simulate the YG of winter wheat in the North China Plain from 2015 to 2019.  Yield validation based on statistical yield data revealed good performance of the PRYM-Wheat Model in simulating winter wheat actual yield (Ya).  The distribution of Ya across the North China Plain showed great heterogeneity, decreasing from southeast to northwest.  The remote sensing-estimated results show that the average YG of the study area was 6 400.6 kg ha–1.  The YG of Jiangsu Province was the largest, at 7 307.4 kg ha–1, while the YG of Anhui Province was the smallest, at 5 842.1 kg ha–1.  An analysis of the responses of YG to environmental factors showed no obvious correlation between YG and precipitation, but there was a weak negative correlation between YG and accumulated temperature.  In addition, the YG was positively correlated with elevation.  In general, studying the specific features of the YG can provide directions for increasing crop yields in the future

Reference | Related Articles | Metrics
Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs
LONG Ke-ren, LI Xiao-kai, ZHANG Ruo-wei, GU Yi-ren, DU Min-jie, XING Xiang-yang, DU Jia-xiang, MAI Miao-miao, WANG Jing, JIN Long, TANG Qian-zi, HU Si-lu, MA Ji-deng, WANG Xun, PAN Deng-ke, LI Ming-zhou
2022, 21 (9): 2675-2690.   DOI: 10.1016/j.jia.2022.07.014
Abstract325)      PDF in ScienceDirect      

Follistatin (FST) is an important regulator of skeletal muscle growth and adipose deposition through its ability to bind to several members of the transforming growth factor-β (TGF-β) superfamily, and thus may be a good candidate for future animal breeding programs.  However, the molecular mechanisms underlying the phenotypic changes have yet to be clarified in pig.  We generated transgenic (TG) pigs that express human FST specifically in skeletal muscle tissues and characterized the phenotypic changes compared with the same tissues in wild-type pigs.  The TG pigs showed increased skeletal muscle growth, decreased adipose deposition, and improved metabolism status (P<0.05).  Transcriptome analysis detected important roles of the PIK3–AKT signaling pathway, calcium-mediated signaling pathway, and amino acid metabolism pathway in FST-induced skeletal muscle hypertrophy, and depot-specific oxidative metabolism changes in psoas major muscle.  Furthermore, the lipid metabolism-related process was changed in adipose tissue in the TG pigs.  Gene set enrichment analysis revealed that genes related to lipid synthesis, lipid catabolism, and lipid storage were down-regulated (P<0.01) in the TG pigs for subcutaneous fat, whereas genes related to lipid catabolism were significantly up-regulated (P<0.05) in the TG pigs for retroperitoneal fat compared with their expression levels in wild-type pigs.  In liver, genes related to the TGF-β signaling pathway were over-represented in the TG pigs, which is consistent with the inhibitory role of FST in regulating TGF-β signaling.  Together, these results provide new insights into the molecular mechanisms underlying the phenotypic changes in pig.

Reference | Related Articles | Metrics
Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean
ZOU Jia-nan, ZHANG Zhan-guo, KANG Qing-lin, YU Si-yang, WANG Jie-qi, CHEN Lin, LIU Yan-ru, MA Chao, ZHU Rong-sheng, ZHU Yong-xu, DONG Xiao-hui, JIANG Hong-wei, WU Xiao-xia, WANG Nan-nan, HU Zhen-bang, QI Zhao-ming, LIU Chun-yan, CHEN Qing-shan, XIN Da-wei, WANG Jin-hui
2022, 21 (8): 2197-2210.   DOI: 10.1016/S2095-3119(21)63658-4
Abstract197)      PDF in ScienceDirect      
Soybean is one of the most important food crops worldwide.  Like other legumes, soybean can form symbiotic relationships with Rhizobium species.  Nitrogen fixation of soybean via its symbiosis with Rhizobium is pivotal for sustainable agriculture.  Type III effectors (T3Es) are essential regulators of the establishment of the symbiosis, and nodule number is a feature of nitrogen-affected nodulation.  However, genes encoding T3Es at quantitative trait loci (QTLs) related to nodulation have rarely been identified. Chromosome segment substitution lines (CSSLs) have a common genetic background but only a few loci with heterogeneous genetic information; thus, they are suitable materials for identifying candidate genes at a target locus.  In this study, a CSSL population was used to identify the QTLs related to nodule number in soybean.  Single nucleotide polymorphism (SNP) markers and candidate genes within the QTLs interval were detected, and it was determined which genes showed differential expression between isolines.  Four candidate genes (GmCDPK28, GmNAC1, GmbHLH, and GmERF5) linked to the SNPs were identified as being related to nodule traits and pivotal processes and pathways involved in symbiosis establishment.  A candidate gene (GmERF5) encoding a transcription factor that may interact directly with the T3E NopAA was identified.  The confirmed CSSLs with important segments and candidate genes identified in this study are valuable resources for further studies on the genetic network and T3Es involved in the signaling pathway that is essential for symbiosis establishment. 
Reference | Related Articles | Metrics
Increasing soil microbial biomass nitrogen in crop rotation systems by improving nitrogen resources under nitrogen application
XING Ting-ting, CAI An-dong, LU Chang-ai, YE Hong-ling, WU Hong-liang, HUAI Sheng-chang, WANG Jin-yu, XU Ming-gang, LIN Qi-mei
2022, 21 (5): 1488-1500.   DOI: 10.1016/S2095-3119(21)63673-0
Abstract189)      PDF in ScienceDirect      
Soil microbial biomass nitrogen (MBN) contains the largest proportion of biologically active nitrogen (N) in soil, and is considered as a crucial participant in soil N cycling.  Agronomic management practices such as crop rotation and mono-cropping systems, dramatically affect MBN in agroecosystems.  However, the influence of crop rotation and mono-cropping in agroecosystems on MBN remains unclear.  A meta-analysis based on 203 published studies was conducted to quantify the effect of crop rotation and mono-cropping systems on MBN under synthetic N fertilizer application.  The analysis showed that crop rotation significantly stimulated the response ratio (RR) of MBN to N fertilization and this parameter reached the highest levels in upland-fallow rotations.  Upland mono-cropping did not change the RR of MBN to N application, however, the RR of MBN to N application in paddy mono-cropping increased.  The difference between crop rotation and mono-cropping systems appeared to be due to the various cropping management scenarios, and the pattern, rate and duration of N addition.  Crop rotation systems led to a more positive effect on soil total N (TN) and a smaller reduction in soil pH than mono-cropping systems.  The RR of MBN to N application was positively correlated with the RR of mineral N only in crop rotation systems and with the RR of soil pH only in mono-cropping systems.  Combining the results of Random Forest (RF) model and structural equation model showed that the predominant driving factors of MBN changes in crop rotation systems were soil mineral N and TN, while in mono-cropping systems the main driving factor was soil pH.  Overall, our study indicates that crop rotation can be an effective way to enhance MBN by improving soil N resources, which promote the resistance of MBN to low pH induced by intensive synthetic N fertilizer application.


Reference | Related Articles | Metrics
Genetics and fitness costs of resistance to flupyradifurone in Bemisia tabaci from China
WANG Ran, ZHANG Jia-song, CHE Wu-nan, WANG Jin-da, LUO Chen
2022, 21 (5): 1436-1443.   DOI: 10.1016/S2095-3119(20)63500-6
Abstract151)      PDF in ScienceDirect      
Flupyradifurone is a promising new insecticide used for controlling Bemisia tabaci during vegetable production.  In this study, we assessed the fitness costs and mode of inheritance associated with resistance to flupyradifurone in B. tabaci by comparing the susceptible strain (MED-S) to one field-evolved flupyradifurone-resistant strain (WH-R, with 199-fold resistance) and one laboratory-selected flupyradifurone-resistant strain (FLU-SEL, with 124-fold resistance).  Progenies of reciprocal crosses between WH-R and MED-S (F1A, F1B, and pooled F1), and between FLU-SEL and MED-S (F1C, F1D, and pooled F1’), showed varying degrees of dominance, indicating that resistance to flupyradifurone in WH-R was autosomal and incompletely dominant, yet in FLU-SEL it was autosomal and incompletely recessive.  Furthermore, the development of resistance to flupyradifurone occurred at the expense of fitness costs for the resistant populations.  Compared to the MED-S strain, WH-R showed a relative fitness of 0.50 with significantly prolonged developmental durations and reduced survival rates of the nymphal and pseudopupal stages, as well as decreased fecundity and hatchability.  Similarly, FLU-SEL showed a relative fitness of 0.65 and also demonstrated prolonged developmental durations and reduced survival rates of nymphs and pseudopupae, as well as decreased hatchability in comparison with the MED-S strain.  However, no significant differences in fecundity were observed between MED-S and FLU-SEL.  The present study provides useful knowledge for formulating pest management strategies in the field, which will allow growers to slow the development of resistance to flupyradifurone and to sustainably control B. tabaci.

Reference | Related Articles | Metrics
Sustainability of the rice–crayfish farming model in waterlogged land: A case study in Qianjiang County, Hubei Province, China
YUAN Peng-li, WANG Jin-ping, GUO Can, GUO Zi-yuan, GUO Yao, CAO Cou-gui
2022, 21 (4): 1203-1214.   DOI: 10.1016/S2095-3119(21)63787-5
Abstract145)      PDF in ScienceDirect      
The rice–crayfish farming model has been rapidly developed and become an economically viable method to supply food in China in recent years.  However, its environmental and economic sustainability has not been thoroughly investigated.  This study uses a survey in 2016 and a field experiment in 2017 in Qianjiang, Hubei Province, China to assess the relative economics of concurrent rice–wheat (RW), rice–crayfish (RC), and crayfish monoculture (CM) models in waterlogged land areas.  The field survey indicated that the RC model had a higher benefit–cost ratio (3.5:1) than the RW (2.0:1) and CM (3.1:1) models and the RC model protected farmers’ enthusiasm for grain production facing unfavourable weather conditions.  The field experiment aimed to explore nitrogen management strategies in RC fields.  In the experiment, four levels of nitrogen concentration gradient - 0 kg N ha–1 (0 N), 75 kg N ha–1 (75 N), 150 kg N ha–1 (150 N) and 225 kg N ha–1 (225 N), were set in a 2-year-old rice–crayfish (RC2) field, an 8-year-old rice–crayfish (RC8) field, and a RW field as a control.  The field experiment results suggested that the peak  rice yield in RW, RC2, and RC8 occurred when 225 N, 150 N and 75 N were used, respectively.  In RC2 and RC8, however, residual feed-nitrogen that was not used by crayfish was utilized by rice plants.  Thus, an optimal amount of nitrogen in RC fields was proposed to improve the nitrogen use efficiency and reduce environmental pollution by nitrogen fertilizer.  Farmers use less nitrogen but have higher net income in RC than in RW and CM.  It is necessary to sustainably develop integrated farming technologies (i.e., proper field configurations for rice fields) to effectively sustain rice production.  The results also showed that the RC farming model was a viable diversification option for rice farmers in waterlogged land.  
Reference | Related Articles | Metrics
Development of a recombinant pB602L-based indirect ELISA assay for detecting antibodies against African swine fever virus in pigs
WANG Peng-fei, WANG Ming, SHI Zhi-bin, SUN Zhen-zhao, WEI Li-li, LIU Zai-si, WANG Shi-da, HE Xi-jun, WANG Jing-fei
2022, 21 (3): 819-825.   DOI: 10.1016/S2095-3119(21)63767-X
Abstract219)      PDF in ScienceDirect      
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a devastating disease of domestic and wild pigs.  There is no effective vaccine, and the control of the disease relies mainly on surveillance and early detection of infected pigs.  Previously, serological assays, such as ELISA, have been developed mainly based on recombinant structural viral proteins of ASFV, including p72, p54, and p30.  However, the antibodies against these proteins do not provide efficient protection against ASFV infection in pigs.  Therefore, new serological assays that can be applied for clinical diagnosis and evaluating serological immune response in vaccinated pigs are still required.  In this study, we expressed and purified a recombinant pB602L protein.  The purified pB602L protein was then used as an antigen to develop an indirect ELISA assay.  This assay has no cross-reaction with the anti-sera against the 15 most common pig pathogens in China, such as classical swine fever virus, pseudorabies virus, and porcine parvovirus.  This assay and a commercial ELISA kit were then used to detect 60 field pig serum samples, including an unknown number of anti-ASFV sera.  The coincidence of the two assays was 95%.  Furthermore, the pB602L-based ELISA was employed to test the antibody responses to the seven-gene-deleted ASFV strain HLJ/18-7GD in pigs.  The results showed that the antibody levels in all vaccinated pigs, starting from the 10th day post-inoculation, have increased continuously during the observation period of 45 days.  Our results indicate that this pB602L-based indirect ELISA assay can be employed potentially in the field of ASFV diagnosis.
Reference | Related Articles | Metrics
The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearum
SHI Dong-ya, REN Wei-chao, WANG Jin, ZHANG Jie, Jane Ifunanya MBADIANYA, MAO Xue-wei, CHEN Chang-jun
2021, 20 (8): 2156-2169.   DOI: 10.1016/S2095-3119(20)63339-1
Abstract154)      PDF in ScienceDirect      
Nutrient and stress factor 1 (Nsf1), a transcription factor containing the classical Cys2-His2 (C2H2) zinc finger motif, is expressed under non-fermentable carbon conditions and in response to salt stress in Saccharomyces cerevisiae.  However, the role of Nsf1 in filamentous fungi is not well understood.  In this study, the orthologue of Nsf1 was investigated in Fusarium graminearum (named FgNsf1), a causal agent of Fusarium head blight (FHB).  The functions of FgNsf1 were evaluated by constructing a FgNSF1 deletion mutant, designated as ΔFgNsf1, and its functional complementation mutant ΔFgNsf1-C.  Gene deletion experiments showed that the mycelial growth rate, asexual and sexual reproduction of ΔFgNsf1 were significantly reduced, but the pigment production of ΔFgNsf1 was remarkably increased compared with the PH-1 and ΔFgNsf1-C.  In addition, the tolerance of ΔFgNsf1 to osmotic pressures, cell wall-damaging agents and oxidative stress increased significantly.  Sensitivity tests to different fungicides revealed that ΔFgNsf1 exhibited increased sensitivity to carbendazim (MBC) and tebuconazole, and enhanced tolerance to fludioxonil and iprodione than PH-1 and ΔFgNsf1-C.  The virulence of ΔFgNsf1 to wheat coleoptiles and flowering wheat heads were dramatically decreased, which was consistent with the decrease in the yield of deoxynivalenol (DON).  All of these defects were restored by target gene complementation.  These results indicated that FgNsf1 plays a crucial role in vegetative growth, asexual and sexual reproduction, stress responses, fungicide sensitivity, and full virulence in F. graminearum.
Reference | Related Articles | Metrics
TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat
MIAO Li-li, LI Yu-ying, ZHANG Hong-juan, ZHANG Hong-ji, LIU Xiu-lin, WANG Jing-yi, CHANG Xiao-ping, MAO Xin-guo, JING Rui-lian
2021, 20 (1): 46-54.   DOI: 10.1016/S2095-3119(19)62830-3
Abstract173)      PDF in ScienceDirect      
Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) is a plant-specific serine/threonine kinase involved in response to adverse environmental stimuli.  Previous studies showed that TaSnRK2.4 was involved in response to abiotic stresses and conferred enhanced tolerance to multiple stresses in Arabidopsis.  Further experiments were performed to decipher the underlying mechanisms and discover new functions.  The genomic sequences of TaSnRK2.4s locating on chromosome 3A, 3B and 3D were obtained.  Sequencing identified one and 13 variations of TaSnRK2.4-3A and TaSnRK2.4-3B, respectively, but no variation was detected in TaSnRK2.4-3D.  The markers 2.4AM1, 2.4BM1 and 2.4BM2 were developed based on three variations.  Association analysis showed that both TaSnRK2.4-3A and TaSnRK2.4-3B were significantly associated with thousand-kernel weight (TKW), and that SNP3A-T and SNP3B-C were favorable alleles for higher TKW.  Yeast two-hybrid and split luciferase assays showed that TaSnRK2.4 physically interacted with abiotic stress responsive protein TaLTP3, suggesting that TaSnRK2.4 enhanced abiotic stress tolerance by activating TaLTP3.  Our studies suggested that TaSnRK2.4 have potential in improving TKW and response to abiotic stress.
 
Reference | Related Articles | Metrics
dCAPS markers developed for nitrate transporter genes TaNRT2L12s associating with 1 000-grain weight in wheat
HUANG Jun-fang, LI Long, MAO Xin-guo, WANG Jing-yi, LIU Hui-min, LI Chao-nan, JING Rui-lian
2020, 19 (6): 1543-1553.   DOI: 10.1016/S2095-3119(19)62683-3
Abstract119)      PDF in ScienceDirect      
Nitrate transporters (NRTs) are regulators of nitrate assimilation and transport.  The genome sequences of TaNRT2L12-A, -B and -D were cloned from wheat (Triticum aestivum L.), and polymorphisms were analyzed by sequencing.  TaNRT2L12-D in a germplasm population was highly conserved.  However, 38 single nucleotide polymorphisms (SNPs) in TaNRT2L12-A coding region and 11 SNPs in TaNRT2L12-B coding region were detected.  Two derived cleaved amplified polymorphic sequences (dCAPS) markers A-CSNP1 and A-CSNP2 were developed for TaNRT2L12-A based on SNP-351 and SNP-729, and three haplotypes were identified in the germplasm population.  B-CSNP1 and B-CSNP2 were developed for TaNRT2L12-B based on SNP-237 and SNP-1 227, and three haplotypes were detected in the germplasm population.  Association analyses between the markers and agronomic traits in 30 environments and phenotypic comparisons revealed that A-CSNP2-A is a superior allele of shorter plant height (PH), length of penultimate internode (LPI) and peduncle length (PL), B-CSNP2-G is a superior allele of higher grain number per spike (GNS).  Hap-6B-1 containing both superior alleles B-CSNP1-C and B-CSNP2-A is a superior haplotype of 1 000-grain weight (TGW).  Expression analysis showed that TaNRT2L12-B is mainly expressed in the root base and regulated by nitrate.  Therefore, TaNRT2L12 may be involved in nitrate transport and signaling to regulate TGW in wheat.  The superior alleles and dCAPS markers of TaNRT2L12-A/B are beneficial to genetic improvement and germplasm enhancement with molecular markers-assisted selection. 
 
Reference | Related Articles | Metrics
Cloning and functional characterization of two peptidoglycan recognition protein isoforms (PGRP-LC) in Bactrocera dorsalis (Diptera: Tephritidae)
WEI Dong, WANG Zhe, XU Hui-qian, NIU Jin-zhi, WANG Jin-jun
2020, 19 (12): 3025-3034.   DOI: 10.1016/S2095-3119(20)63202-6
Abstract85)      PDF in ScienceDirect      
The innate immune system of insects is the front line of self-defense against pathogen invasion.  Peptidoglycan recognition proteins (PGRPs) are important components and play key roles in insect immune systems by recognizing peptidoglycan (PGN) in bacterial cell walls.  We characterized two isoforms of the PGRP-LC gene, BdPGRP-LCa and BdPGRP-LCb, from Bactrocera dorsalis (Hendel), an important fruit and vegetable pest worldwide.  These two isoforms contain an open reading frames of 1 668 bp and 1 731 bp, encoding a protein of 555 and 576 amino acids, respectively.  Quantitative real-time PCR results showed that both transcripts were prominently expressed in midgut and fat body of B. dorsalis adult.  Inoculation of pathogens showed that both isoforms actively responded to Escherichia coli PGN.  We also observed a light response to Staphylococcus aureus PGN.  Upon Beauveria bassiana inoculation, the expression of BdPGRP-LCa was enhanced, but the expression of BdPGRP-LCb was suppressed.  Suppression of both transcripts by RNA interference led to increased mortality of flies challenged by E. coli, indicating that the two isoforms are involved in sensing Gram-negative bacterial infections.
Reference | Related Articles | Metrics
Development of peanut varieties with high oil content by in vitro mutagenesis and screening
WANG Jing-shan, SHI Lei, LIU Yue, ZHAO Ming-xia, WANG Xia, QIAO Li-xian, SUI Jiong-ming, LI Guan, ZHU Hong, YU Shan-lin
2020, 19 (12): 2974-2982.   DOI: 10.1016/S2095-3119(20)63182-3
Abstract148)      PDF in ScienceDirect      
Peanut (Arachis hypogaea L.) is an important oil crop globally and high oil content is one of the major targets in peanut breeding programs.  Previous studies indicated that the osmotic pressure (OP) of the leaves of peanut plants subjected to drought stress was negatively correlated with kernel oil content.  Based on this knowledge, we established a practical and reliable method for creating new peanut varieties with high oil content using in vitro mutagenesis and directional OP-based selection.  Using embryonic leaflets of peanut variety Huayu 20 as explants, pingyangmycin (PYM) as the mutagen, and hydroxyproline (HYP) as the OP regulator, we developed 15 HYP-tolerant regenerated plants.  For each regenerated plant, we selected offspring with oil content>55% (relative to 49.5% for Huayu 20).  We developed and released three new peanut varieties with high yield and high oil content from the offspring of the HYP-tolerant regenerated plants.  The three new varieties were named as Yuhua 4, Yuhua 9 and Yuhua 14 and their oil contents were 57.7, 61.1 and 59.3%, respectively.  The results indicate that in vitro mutagenesis with PYM followed by directed screening with HYP is a useful approach for breeding peanut varieties with high oil contents.
Reference | Related Articles | Metrics
First report of a new potato disease caused by Galactomyces candidum F12 in China
SONG Su-qin, Lü Zhuo, WANG Jing, ZHU Jing, GU Mei-ying, TANG Qi-yong, ZHANG Zhi-dong, WANG Wei, ZHANG Li-juan, WANG Bo
2020, 19 (10): 2470-2476.   DOI: 10.1016/S2095-3119(20)63257-9
Abstract123)      PDF in ScienceDirect      
Potato (Solanum tuberosum L.) is an important crop throughout the world.  An uncharacterized disease has been observed on potato plants during the growing season and tubers during the storage period from Nileke County, Qitai County and other locations in Xinjiang, China.  A particular fungus was consistently isolated from the infected potato plants and tubers.  Based on its morphology, molecular characteristics, pathogenicity test and internal transcribed spacer (ITS) sequence, the pathogens was identified as Galactomyces candidum F12.  Further study also showed that the hyphae and conidia of the pathogenic fungus grew faster as the temperature was 30°C, pH was 7, soluble starch was used as optimal carbon source and yeast powder as optimal nitrogen source.  In addition, 12-h continuous illumination light was beneficial to the hyphal growth, while 24-h continuous illumination was beneficial to the sporulation of the strain at 30°C.  To our knowledge, this is the first report of Galactomyces candidum causing leaf wilt and postharvest tuber rot on potato in China.
Reference | Related Articles | Metrics
Genetic and agronomic traits stability of marker-free transgenic wheat plants generated from Agrobacterium-mediated co-transformation in T2 and T3 generations
LIU Hui-yun, WANG Ke, WANG Jing, DU Li-pu, PEI Xin-wu, YE Xing-guo
2020, 19 (1): 23-32.   DOI: 10.1016/S2095-3119(19)62601-8
Abstract99)      PDF in ScienceDirect      
Genetically modified wheat has not been commercially utilized in agriculture largely due to regulatory hurdles associated with traditional transformation methods.  Development of marker-free transgenic wheat plants will help to facilitate biosafety evaluation and the eventual environmental release of transgenic wheat varieties.  In this study, the marker-free transgenic wheat plants previously obtained by Agrobacterium-mediated co-transformation of double T-DNAs vector were identified by fluorescence in situ hybridization (FISH) in the T1 generation, and their genetic stability and agronomic traits were analyzed in T2 and T3 generations.  FISH analysis indicated that the transgene often integrated into a position at the distal region of wheat chromosomes.  Furthermore, we show that the GUS transgene was stably inherited in the marker-free transgenic plants in T1 to T3 generations.  No significant differences in agronomic traits or grain characteristics were observed in T3 generation, with the exception of a small variation in spike length and grains per spike in a few lines.  The selection marker of bar gene was not found in the transgenic plants through T1 to T3 generations.  The results from this investigation lay a solid foundation for the potential application of the marker-free transgenic wheat plants achieved through the co-transformation of double T-DNAs vector by Agrobacterium in agriculture after biosafty evaluation.
Reference | Related Articles | Metrics
Carbon cycle in response to residue management and fertilizer application in a cotton field in arid Northwest China
ZHANG Peng-peng, XU Shou-zhen, ZHANG Guo-juan, PU Xiao-zhen, WANG Jin, ZHANG Wang-feng
2019, 18 (5): 1103-1119.   DOI: 10.1016/S2095-3119(18)62075-1
Abstract178)      PDF in ScienceDirect      
Understanding the influence of farming practices on carbon (C) cycling is important for maintaining soil quality and mitigating climate change, especially in arid regions where soil infertility, water deficiency, and climate change had significantly influenced on agroecosystem.  A field experiment was set up in 2009 to examine the influence of residue management and fertilizer application on the C cycle in a cotton field in the Xinjiang Uygur Autonomous Region of Northwest China.  The study included two residue management practices (residue incorporation (S) and residue removal (NS)) and four fertilizer treatments (no fertilizer (CK), organic manure (OM), chemical fertilizer (NPK), chemical fertilizer plus organic manure (NPK+OM)).  Soil organic carbon (SOC) and some of its labile fractions, soil CO2 flux, and canopy apparent photosynthesis were measured during the cotton growing seasons in 2015 and 2016.  The results showed that SOC, labile SOC fractions, canopy apparent photosynthesis, and soil CO2 emission were significantly greater in S+NPK+OM (residue incorporation+chemical fertilizer) than in the other treatments.  Analysis of all data showed that canopy apparent photosynthesis and soil CO2 emission increased as SOC increased.  The S+OM (residue incorporation+organic manure) and S+NPK+OM treatments were greater for soil C sequestration, whereas the other treatments resulted in soil C loss.  The S+NPK treatment is currently the standard management practice in Xinjiang.  The results of this study indicate that S+NPK cannot offset soil C losses due to organic matter decomposition and autotrophic respiration.  Residue return combined with NPK fertilizer and organic manure application is the preferred strategy in arid regions for increasing soil C sequestration. 
Reference | Related Articles | Metrics
Patent analysis provides insights into the history of cotton molecular breeding worldwide over the last 50 years
HE Wei, ZHAO Hui-min, YANG Xiao-wei, ZHANG Rui, WANG Jing-jing
2019, 18 (3): 539-552.   DOI: 10.1016/S2095-3119(18)62012-X
Abstract209)      PDF (1488KB)(207)      
Cotton is a globally important natural fiber and oilseed crop of crucial economic significance.  Molecular breeding has become a dominant method of cotton cultivation because it allows for a shorter breeding period and directional selection of high quality genes.  Patent data are key resources and are the core competitiveness of agricultural development, as the world’s largest and most reliable source of technical information.  However, little attention has been paid to patent analysis of cotton molecular breeding.  This study uses bibliometric analysis methodology and technical classification indexing to reveal global development trends of cotton molecular breeding, based on patents by retrieval methods and expert screening.  The annual number of patents, the life-cycle of patent-based technology, patent portfolios of primary countries, and main patentees, as well as technical distribution of patents, were analyzed in this study.  In addition, this study put emphasis on the comparative analysis of two important patentees through patent roadmaps based on the relationship among patent citations.  Finally, in order to understand the trend of new molecular breeding technology, patents related to clustered regularly interspaced short palindromic repeats (CRISPR), RNA interference (RNAi), and gene chip were also analyzed, all of which apply to cotton but also to other crops.  Results in this paper can provide references for cotton molecular breeding researchers and relevant management departments.
 
 
Reference | Related Articles | Metrics
Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.)
DU Qi, ZHAO Xin-hua, XIA Le, JIANG Chun-ji, WANG Xiao-guang, HAN Yi, WANG Jing, YU Hai-qiu
2019, 18 (2): 395-406.   DOI: 10.1016/S2095-3119(18)61953-7
Abstract342)      PDF (5041KB)(821)      
Potassium (K) deficiency significantly decreases photosynthesis due to leaf chlorosis induced by accumulation of reactive oxygen species (ROS).  But, the physiological mechanism for adjusting antioxidative defense system to protect leaf function in maize (Zea mays L.) is unknown.  In the present study, four maize inbred lines (K-tolerant, 90-21-3 and 099; K-sensitive, D937 and 835) were used to analyze leaf photosynthesis, anatomical structure, chloroplast ultrastructure, ROS, and antioxidant activities.  The results showed that the chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), photochemical quenching (qP), and electron transport rate of PSII (ETR) in 90-21-3 and 099 were higher than those in D937 and 835 under K deficiency treatment.  Parameters of leaf anatomical structure in D937 that were significantly changed under K deficiency treatment include smaller thickness of leaf, lower epidermis cells, and vascular bundle area, whereas the vascular bundle area, xylem vessel number, and area in 90-21-3 were significantly larger or higher.  D937 also had seriously damaged chloroplasts and PSII reaction centers along with increased superoxide anion (O2-·) and hydrogen peroxide (H2O2).  Activities of antioxidants, like superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), were significantly stimulated in 90-21-3 resulting in lower levels of O2-· and H2O2.  These results indicated that the K-tolerant maize promoted antioxidant enzyme activities to maintain ROS homeostasis and suffered less oxidative damage on the photosynthetic apparatus, thereby maintaining regular photosynthesis under K deficiency stress.
Reference | Related Articles | Metrics
Discovery of leaf region and time point related modules and genes in maize (Zea mays L.) leaves by Weighted Gene Co-expression Network analysis (WGCNA) of gene expression profiles of carbon metabolism
WANG Jing-lu, ZHANG Ying, PAN Xiao-di, DU Jian-jun, MA Li-ming, GUO Xin-yu
2019, 18 (2): 350-360.   DOI: 10.1016/S2095-3119(18)62029-5
Abstract290)      PDF (1658KB)(274)      
Maize (Zea mays L.) yield depends not only on the conversion and accumulation of carbohydrates in kernels, but also on the supply of carbohydrates by leaves.  However, the carbon metabolism process in leaves can vary across different leaf regions and during the day and night.  Hence, we used Weighted Gene Co-expression Network analysis (WGCNA) with the gene expression profiles of carbon metabolism to identify the modules and genes that may associate with particular regions in a leaf and time of day.  There were a total of 45 samples of maize leaves that were taken from three different regions of a growing maize leaf at five time points.  Robust Multi-array Average analysis was used to pre-process the raw data of GSE85963 (accession number), and quality control of data was based on Pearson correlation coefficients.  We obtained eight co-expression network modules.  The modules with the highest significance of association with LeafRegion and TimePoint were selected.  Functional enrichment and gene-gene interaction analyses were conducted to acquire the hub genes and pathways in these significant modules.  These results can support the findings of similar studies by providing evidence of potential module genes and enriched pathways associated with leaf development in maize.
Reference | Related Articles | Metrics
Assessment of the contribution percentage of inherent soil productivity of cultivated land in China
WANG Shi-chao, WANG Jin-zhou, ZHAO Ya-wen, REN Yi, XU Ming-gang, ZHANG Shu-xiang, LU Chang-ai
2019, 18 (11): 2619-2627.   DOI: 10.1016/S2095-3119(18)62152-5
Abstract103)      PDF in ScienceDirect      
The contribution percentage of inherent soil productivity (CPISP) refers to the ratio of crop yields under no-fertilization versus under conventional fertilization with the same field management.  CPISP is a comprehensive measure of soil fertility.  This study used 1 086 on-farm trials (from 1984–2013) and 27 long-term field experiments (from 1979–2013) to quantify changes in CPISP.  Here, we present CPISP3 values, which reflect the CPISP states during the first three years after site establishment, for a series of sites at different locations in China collected in 1984–1990 (the 1980s), 1996–2000 (the 1990s), and 2004–2013 (the 2000s).  The results showed that the average CPISP3 value for three crops (wheat, rice, and maize) was 53.8%.  Historically, the CPISP3 in the 1990s (57.5%) was much higher than those in the 1980s (50.3%), and the 2000s (52.0%) (P≤0.05).  Long-term no-fertilization caused CPISP levels to gradually decline and then stabilize; for example, in a mono-cropping system with irrigation, the CPISP values in Northwest and Northeast China declined by 4.5 and 4.0%, respectively, each year for the first ten years, but subsequently, the CPISP values stabilized.  In contrast, the CPISP for upland crops in double-cropping systems continued to decrease at a rate of 1.1% per year.  The CPISP for upland-paddy cropping decreased very slowly (0.07% per year), whereas the CPISP for paddy cropping decreased sharply (3.1% per year, on average) for the first two years and then remained steady during the following years.  Therefore, upland crops in double-cropping systems consume the most inherent soil productivity, whereas paddy fields are favourable for maintaining a high level of CPISP.  Overall, our results demonstrate a need to further improve China’s CPISP3 values to meet growing productivity demands. 
Reference | Related Articles | Metrics
Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China
WANG Ran, WANG Jin-da, CHE Wu-nan, SUN Yan, LI Wen-xiang, LUO Chen
2019, 18 (11): 2571-2578.   DOI: 10.1016/S2095-3119(19)62557-8
Abstract130)      PDF in ScienceDirect      
Cyantraniliprole is a novel anthranilic diamide insecticide with significant efficacy against Bemisia tabaci, an important pest insect worldwide.  In this study, we conducted reversion and selection work and genetic analysis, and determined cross-resistance spectrum and synergism of cyantraniliprole resistance based on the reported population, SX population, of B. tabaci collected from Shanxi Province, China.  Compared with a susceptible strain (MED-S), SX population, the field-evolved cyantraniliprole-resistant population exhibited 26.4-fold higher resistance to cyantraniliprole.  In SX, a sharp decline of cyantraniliprole resistance was shown in the absence of selection.  Another tested strain, SX-R, was established from SX population after successive selection with cyantraniliprole and recently developed 138.4-fold high resistance to cyantraniliprole.  SX-R had no cross-resistance to abamectin, imidacloprid, thiamethoxam, sulfoxaflor, or bifenthrin.  Genetic analysis illustrated that cyantraniliprole resistance in SX-R was autosomally inherited and incompletely dominant.  Additionally, piperonyl butoxide (PBO) significantly inhibited cyantraniliprole resistance in the SX-R strain.  In conclusion, the selection of SX with cyantraniliprole led to high resistance to cyantraniliprole which is incompletely dominant and no cross-resistance to several common types of insecticides.  Enhanced oxidative metabolism is possibly involved in the resistance of SX-R, yet target-site resistance could not be excluded. 
Reference | Related Articles | Metrics
Generation of recombinant rabies virus ERA strain applied to virus tracking in cell infection
ZHAO Dan-dan, SHUAI Lei, GE Jin-ying, WANG Jin-liang, WEN Zhi-yuan, LIU Ren-qiang, WANG Chong, WANG Xi-jun, BU Zhi-gao
2019, 18 (10): 2361-2368.   DOI: 10.1016/S2095-3119(19)62717-6
Abstract156)      PDF in ScienceDirect      
The mechanism of rabies virus (RABV) infection still needs to be further characterized.  RABV particle with self-fluorescent is a powerful viral model to visualize the viral infection process in cells.  Herein, based on a reverse genetic system of the Evelyn-Rokitnicki-Abelseth (rERA) strain, we generated a recombinant RABV rERA-N/mCherry strain that stably expresses an additional ERA nucleoprotein that fuses with the red fluorescent protein mCherry (N/mCherry).  The rERA-N/mCherry strain retained growth property similar to the parent strain rERA in vitro.  The N/mCherry expression showed genetic stability during passage into mouse neuroblastoma (NA) cells and did not change the virulence of the vector.  The rERA-N/mCherry strain was then utilized as a visual viral model to study the RABV-cell binding and internalization.  We directly observed the red self-fluorescence of rERA-N/mCherry particles binding to the cell surface, and further co-localizing with clathrin in the early stage of infection in NA cells by fluorescence microscopy.  Our results showed that the rERA-N/mCherry strain uses clathrin-dependent endocytosis to enter cells, which is consistent with the well-known mechanism of RABV invasion.  The recombinant RABV rERA-N/mCherry thus appears to have the potential to be an effective viral model to further explore the fundamental molecular mechanism of rabies neuropathogenesis.
Reference | Related Articles | Metrics
The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland
WANG Shi-chao, ZHAO Ya-wen, WANG Jin-zhou, ZHU Ping, CUI Xian, HAN Xiao-zeng, XU Ming-gang, LU Chang-ai
2018, 17 (2): 436-448.   DOI: 10.1016/S2095-3119(17)61739-8
Abstract761)      PDF in ScienceDirect      
Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity.  However, decreasing organic matter after land reclamation, and the effects of long-term inputs of organic carbon have made it less fertile black soil in Northeast China.  Straw return could be an effective method for improving soil organic carbon (SOC) sequestration in black soils.  The objective of this study was to evaluate whether straw return effectively increases SOC sequestration.  Long-term field experiments were conducted at three sites in Northeast China with varying latitudes and SOC densities.  Study plots were subjected to three treatments: no fertilization (CK); inorganic fertilization (NPK); and NPK plus straw return (NPKS).  The results showed that the SOC stocks resulting from NPKS treatment were 4.0 and 5.7% higher than those from NPK treatment at two sites, but straw return did not significantly affect the SOC stocks at the third site.  Furthermore, at higher SOC densities, the NPKS treatment resulted in significantly higher soil carbon sequestration rates (CSR) than the NPK treatment.  The equilibrium value of the CSR for the NPKS treatment equated to cultivation times of 17, 11, and 8 years at the different sites.  Straw return did not significantly increase the SOC stocks in regions with low SOC densities, but did enhance the C pool in regions with high SOC densities.  These results show that there is strong regional variation in the effects of straw return on the SOC stocks in black soil in Northeast China.  Additional cultivations and fertilization practices should be used when straw return is considered as an approach for the long-term improvement of the soil organic carbon pool.
Reference | Related Articles | Metrics