Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2865-2881    DOI: 10.1016/j.jia.2023.02.036
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Integrating a novel irrigation approximation method with a process-based remote sensing model to estimate multi-years' winter wheat yield over the North China Plain

ZHANG Sha1, YANG Shan-shan1, WANG Jing-wen2, WU Xi-fang3, Malak HENCHIRI1, Tehseen JAVED1, 4, ZHANG Jia-hua2#, BAI Yun1#

1 Research Center for Space Information and Big Earth Data, College of Computer Science and Technology, Qingdao University, Qingdao 266071, P.R.China

2 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, P.R.China

3 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, P.R.China

4 Department of Environmental Sciences, Kohat University of Science and Technology, Kohat 26000, Pakistan

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

准确估算区域尺度冬小麦产量对掌握粮食生产情况和保证国家粮食安全十分重要。但目前精确的水资源区域灌溉信息难以获取,基于遥感模拟区域尺度冬小麦产量的年际和空间变化仍存在较大误差为此本研究以中国冬小麦主产区华北平原(NCP)为研究区,发展基于灌溉模式参数(IPPs,即灌溉频率和灌溉时期)近似估计冬小麦灌溉信息的新方法,并将其耦合到一个新发展的遥感过程模型(PRYM–Wheat),更准确模拟NCP冬小麦产量。本研究使用NCP各县市参考年份(2010–2015)的统计产量确定IPPs的最优值,然后在站点和区域尺度验证耦合了最优IPPsPRYM–Wheat模拟冬小麦的精度结果显示,耦合了最优IPPsPRYM–Wheat模拟参考年份冬小麦产量的相关系数R提升了0.15(37%),均方根误差RMSE减少了0.90 t/hm2(41%);模拟验证年份(2001–20092016–2019)站点尺度河北省县级尺度河南省县级尺度山东省市级尺度的R(RMSE)分别0.80(0.62 t/hm2)、0.510.95 t/hm2、0.721.18 t/hm2和0.420.72 t/hm2)。总体来看IPPs可以有效提升基于遥感模拟灌溉区区域尺度冬小麦产量的精度,耦合了IPPsPRYM–Wheat模型可为估算区域冬小麦多年产量提供稳定可靠的方法,为确保区域粮食安全提供科学依据。



Abstract  

Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.  However, using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.  Thus, we proposed a new approach to approximating irrigations of winter wheat over the North China Plain (NCP), where irrigation occurs extensively during the winter wheat growing season.  This approach used irrigation pattern parameters (IPPs) to define the irrigation frequency and timing.  Then, they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat (PRYM–Wheat), to improve the regional estimates of winter wheat over the NCP.  The IPPs were determined using statistical yield data of reference years (2010–2015) over the NCP.  Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield, with an increase and decrease in the correlation coefficient (R) and root mean square error (RMSE) of 0.15 (about 37%) and 0.90 t ha–1 (about 41%), respectively.  The data in validation years (2001–2009 and 2016–2019) were used to validate PRYM–Wheat.  In addition, our findings also showed R (RMSE) of 0.80 (0.62 t ha–1) on a site level, 0.61 (0.91 t ha–1) for Hebei Province on a county level, 0.73 (0.97 t ha–1) for Henan Province on a county level, and 0.55 (0.75 t ha–1) for Shandong Province on a city level.  Overall, PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years, providing a scientific basis for ensuring regional food security.

Keywords:  approximating irrigations        process-based model        remote sensing        winter wheat yield        North China Plain  
Received: 13 July 2022   Accepted: 06 January 2023
Fund: 

This work was supported by the National Natural Science Foundation of China (42101382 and 41901342), the Shandong Provincial Natural Science Foundation (ZR2020QD016), the National Key Research and Development Program of China (2016YFD0300101).

About author:  ZHANG Sha, E-mail: zhangsha@qdu.edu.cn; #Correspondence ZHANG Jia-hua, E-mail: zhangjh@radi.ac.cn; BAI Yun, E-mail: baiyun@qdu.edu.cn

Cite this article: 

ZHANG Sha, YANG Shan-shan, WANG Jing-wen, WU Xi-fang, Malak HENCHIRI, Tehseen JAVED, ZHANG Jia-hua, BAI Yun. 2023. Integrating a novel irrigation approximation method with a process-based remote sensing model to estimate multi-years' winter wheat yield over the North China Plain. Journal of Integrative Agriculture, 22(9): 2865-2881.

Abi Saab M T, El Alam R, Jomaa I, Skaf S, Fahed S, Albrizio R, Todorovic M. 2021. Coupling remote sensing data and AquaCrop model for simulation of winter wheat growth under rainfed and irrigated conditions in a Mediterranean environment. Agronomy11, 2265.

Amarasingha R P R K, Suriyagoda L D B, Marambe B, Gaydon D S, Galagedara L W, Punyawardena R, Silva G L L P, Nidumolu U, Howden M. 2015. Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka. Agricultural Water Management160, 132–143.

Bai Y, Zhang J, Zhang S, Koju U A, Yao F, Igbawua T. 2017. Using precipitation, vertical root distribution and satellite-retrieved vegetation information to parameterize water stress in a Penman–Monteith approach to evapotranspiration modeling under Mediterranean climate. Journal of Advances in Modeling Earth Systems9, 168–192.

Bai Y, Zhang J, Zhang S, Yao F, Magliulo V. 2018. A remote sensing-based two-leaf canopy conductance model: Global optimization and applications in modeling gross primary productivity and evapotranspiration of crops. Remote Sensing of Environment215, 411–437.

Becker-Reshef I, Vermote E, Lindeman M, Justice C. 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment114, 1312–1323.

Chang Q, Zhang J, Jiao W, Yao F. 2016. A comparative analysis of the NDVIg and NDVI3g in monitoring vegetation phenology changes in the Northern Hemisphere. Geocarto International33, 1–20.

Chao Z, Liu N, Zhang P, Ying T, Song K. 2019. Estimation methods developing with remote sensing information for energy crop biomass: A comparative review. Biomass and Bioenergy122, 414–425.

Chen J M, Liu J, Cihlar J, Goulden M L. 1999. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling124, 99–119.

Chen R, Ersi K, Yang J, Lu S, Zhao W. 2004. Validation of five global radiation models with measured daily data in China. Energy Conversion and Management45, 1759–1769.

Chen Y, Lu D, Luo L, Pokhrel Y, Deb K, Huang J, Ran Y. 2018a. Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data. Remote Sensing of Environment204, 197–211.

Chen Y, Zhang Z, Tao F. 2018b. Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data. European Journal of Agronomy101, 163–173.

Chen Z, Ren J, Tang H, Shi Y, Leng P, Liu J, Wang L, Wu W, Yao Y, Hasituya. 2016. Progress and perspectives on agricultural remote sensing research and application in China. Journal of Remote Sensing20, 748–767.

Cheng Z, Meng J. 2015. Research advances and perspectives on crop yield estimation models. Chinese Journal of Eco-Agriculture23, 402–415. (in Chinese)

Curnel Y, de Wit A J W, Duveiller G, Defourny P. 2011. Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS experiment. Agricultural and Forest Meteorology151, 1843–1855.

Fang H, Zhang Y, Wei S, Li W, Ye Y, Sun T, Liu W. 2019. Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China. Remote Sensing of Environment233, 111377.

Fang Q, Zhang X, Shao L, Chen S, Sun H. 2018. Assessing the performance of different irrigation systems on winter wheat under limited water supply. Agricultural Water Management196, 133–143.

Fang Q, Zhang X Y, Chen S Y, Shao L W, Sun H Y. 2017. Selecting traits to increase winter wheat yield under climate change in the North China Plain. Field Crops Research207, 30–41.

Franch B, Vermote E F, Becker-Reshef I, Claverie M, Huang J, Zhang J, Justice C, Sobrino J A. 2015. Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information. Remote Sensing of Environment161, 131–148.

Fu L, Qu Y, Wang J. 2016. Bias analysis in validation of MODIS LAI product: A case study in cropland of Huailai, northern China. In: IEEE International Symposium on Geoscience and Remote Sensing IGARSS. Institute of Electrical and Electronics Engineers (IEEE), Beijing. pp. 5921–5924.

Guo J, Bai Q, Guo W, Bu Z, Zhang W. 2022. Soil moisture content estimation in winter wheat planting area for multi-source sensing data using CNNR. Computers and Electronics in Agriculture193, 106670.

Huang J, Ma H, Sedano F, Lewis P, Liang S, Wu Q, Su W, Zhang X, Zhu D. 2019. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST-PROSAIL model. European Journal of Agronomy102, 1–13.

Huang J, Ma H, Su W, Zhang X, Huang Y, Fan J, Wu W. 2015a. Jointly assimilating MODIS LAI and ET products Into the SWAP model for winter wheat yield estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing8, 4060–4071.

Huang J, Tian L, Liang S, Ma H, Becker-Reshef I, Huang Y, Wei S, Zhang X, Zhu D, Wu W. 2015b. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology204, 106–121.

Huang Y, Ryu Y, Jiang C, Kimm H, Kim S, Kang M, Shim K. 2018. BESS–Rice: A remote sensing derived and biophysical process-based rice productivity simulation model. Agricultural and Forest Meteorology256, 253–269.

Ittersum M K V, Cassman K G, Grassini P, Wolf J, Tittonell P, Hochman Z. 2013. Yield gap analysis with local to global relevance - A review. Field Crops Research143, 4–17.

Ju W, Gao P, Zhou Y, Chen J, Chen S, Li X. 2010. Prediction of summer grain crop yield with a process-based ecosystem model and remote sensing data for the northern area of the Jiangsu Province, China. International Journal of Remote Sensing46, 1573–1587.

Li H, Chen Z, Liu G, Jiang Z, Chong H. 2017. Improving winter wheat yield estimation from the CERES-Wheat model to assimilate leaf area index with different assimilation methods and spatio-temporal scales. Remote Sensing9, 190.

Li K, Yang X, Liu Z, Zhang T, Lu S, Liu Y. 2014. Low yield gap of winter wheat in the North China Plain. European Journal of Agronomy59, 1–12.

Liu J, Chen J M, Cihlar J, Park W M. 1997. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment62, 158–175.

Liu Z, Yang X, Hubbard K G, Lin X. 2012. Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biology18, 3441–3454.

Liu Z, Yang X, Lin X, Hubbard K G, Lv S, Jing W. 2015. Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China. Science of the Total Environment541, 756–764.

Lobell D B, Asner G P, Ortiz-Monasterio J I, Benning T L. 2003. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agriculture Ecosystems and Environment94, 205–220.

Lobell D B, Ortiz-Monasterio J I, Sibley A M, Sohu V S. 2013. Satellite detection of earlier wheat sowing in India and implications for yield trends. Agricultural Systems115, 137–143.

Ma G, Huang J, Wu W, Fan J, Zou J, Wu S. 2013. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Mathematical and Computer Modelling58, 634–643.

Ouaadi N, Jarlan L, Khabba S, Ezzahar J, Le Page M, Merlin O. 2021. Irrigation amounts and timing retrieval through data assimilation of surface soil moisture into the FAO-56
approach in the south Mediterranean region. Remote Sensing13, 2667.

Ren J, Chen Z, Tang H, Shi R. 2006. Regional yield estimation for winter wheat based on net primary production model. Transactions of the Chinese Society of Agricultural Engineering22, 111–117. (in Chinese)

Ren J, Chen Z, Zhou Q, Tang H. 2008. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. International Journal of Applied Earth Observation and Geoinformation10, 403–413.

Ren S, Qin Q, Ren H. 2019. Contrasting wheat phenological responses to climate change in global scale. Science of the Total Environment665, 620–631.

Said H, Mbaye M, Heng L K, Weltin G, Franz T, Dercon G, Toloza A, Strauss P, Rab G. 2021. High-resolution soil moisture retrieval using C-band radar Sentinel-1 and Cosmic-ray neutron sensor data. In: 2021 IEEE International Workshop on Metrology for Agriculture and Forestry. Institute of Electrical and Electronics Engineers (IEEE), Italy. pp. 221–225.

Shen Y, Zhang Y, R. Scanlon B, Lei H, Yang D, Yang F. 2013. Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain. Agricultural and Forest Meteorology181, 133–142.

Son N T, Chen C F, Chen C R, Chang L Y, Duc H N, Nguyen L D. 2013. Prediction of rice crop yield using MODIS EVI-LAI data in the Mekong Delta, Vietnam. International Journal of Remote Sensing34, 7275–7292.

Wang J, Gong S H, Xu D, Yu Y D, Zhao Y F. 2013. Impact of drip and level-basin irrigation on growth and yield of winter wheat in the North China Plain. Irrigation Science31, 1025–1037.

Wang J, Wang E L, Yang X G, Zhang F S, Yin H. 2012. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change113, 825–840.

Wang J, Zhang J, Bai Y, Zhang S, Yang S, Yao F. 2020. Integrating remote sensing-based process model with environmental zonation scheme to estimate rice yield gap in Northeast China. Field Crops Research246, 107682.

Wang L, Zheng Y, Yu Q, Wang E. 2007. Applicability of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat–maize continuous cropping system in North China Plain. Chinese Journal of Applied Ecology18, 2480–2486. (in Chinese)

Wang P J, Sun R, Zhang J H, Zhou Y Y, Xie D H, Zhu Q J. 2011. Yield estimation of winter wheat in the North China Plain using the remote-sensing-photosynthesis-yield estimation for crops (RS-P-YEC) model. International Journal of Remote Sensing32, 6335–6348.

Wang S, Hu Y, Yuan R, Feng W, Pan Y, Yang Y. 2019. Ensuring water security, food security, and clean water in the North China Plain-conflicting strategies. Current Opinion in Environmental Sustainability40, 63–71.

Wang X, Li X B. 2018. Irrigation water availability and winter wheat abandonment in the North China Plain (NCP): Findings from a case study in Cangxian County of Hebei Province. Sustainability10, 354.

Wang Y, Xu X, Huang L, Yang G, Fan L, Wei P, Chen G. 2019. An improved CASA model for estimating winter wheat yield from remote sensing images. Remote Sensing11, 1088.

Wart J V, Kersebaum K C, Peng S, Milner M, Cassman K G. 2013. Estimating crop yield potential at regional to national scales. Field Crops Research143, 34–43.

Wu X, Yang W, Wang C, Shen Y, Kondoh A. 2019. Interactions among the phenological events of winter wheat in the North China Plain-based on field data and improved MODIS estimation. Remote Sensing11, 2976.

Xiao X, Zhang Q, Braswell B, Urbanski S, Boles S, Wofsy S, Iii B M, Ojima D. 2004. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment91, 256–270.

Xie Q, Dash J, Huang W, Peng D, Ye H C. 2018. Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing11, 1482–1493.

Yang F, Yang J, Wang J, Zhu Y. 2015. Assessment and validation of MODIS and GEOV1 LAI with ground-measured data and an analysis of the effect of residential area in mixed pixel. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing8, 763–774.

Yang J, Huo Z, Wu D, Wang P, Liu Q. 2017. Investigation on water productivity of winter wheat based on MODIS and SEBAL in the Huang–Huai–Hai Plain. Chinese Journal of Agrometeorology38, 435–446. (in Chinese)

Yang P, Chen Z, Zhou Q, Zha Y, Wu W, Shibasaki R. 2006. Comparisons of MODIS LAI products and LAI estimates derived from Landsat TM. In: IEEE International Conference on Geoscience and Remote Sensing Symposium. Institute of Electrical and Electronics Engineers (IEEE), USA. pp. 2681–2684.

Yang X, Hao Y, Dong Y, Yu H. 2014. Spatial decision supporting for winter wheat irrigation and fertilizer optimizing in North China Plain. Proceedings of International Symposium on Optoelectronic Technology and Application 2014: Optical Remote Sensing Technology and Applications9299, 92990Q.

Yao F, Liu D, Zhang J, Wang P. 2016. Estimation of rice yield with a process-based model and remote sensing data in the middle and lower reaches of Yangtze River of China. Journal of the Indian Society of Remote Sensing45, 477–484.

Yao F, Tang Y, Wang P, Zhang J. 2015. Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain. Physics and Chemistry of the Earth87, 142–152.

Yuan J, Niu Z, Wang C. 2006. Vegetation NPP distribution based on MODIS data and CASA model - A case study of northern Hebei Province. Chinese Geographical Science16, 334–341.

Yuan W, Cai W, Nguy-Robertson A L, Fang H, Suyker A E, Chen Y, Dong W, Liu S, Zhang H. 2015. Uncertainty in simulating gross primary production of cropland ecosystem from satellite-based models. Agricultural and Forest Meteorology207, 48–57.

Zhang L, Wang S, He Y, Ma Y, Zhuang L, Hou Y. 2007. Winter wheat growth simulation under water stress by remote sensing in North China. Acta Agronomica Sinica33, 401–410. (in Chinese)

Zhang S. 2019. Study of the winter wheat yield and efficiency gaps in Huang–Huai–Hai Plain based on remote sensing: Winter wheat area extraction, simulation using remote-sensed model and analysis of dominated factors. Ph D thesis, University of Chinese Academy of Sciences, Beijing. (in Chinese)

Zhang S, Bai Y, Zhang J H, Ali S. 2021. Developing a process-based and remote sensing driven crop yield model for maize (PRYM–Maize) and its validation over the Northeast China Plain. Journal of Integrative Agriculture20, 408–423.

Zhang S, Zhang J, Bai Y, Koju U A, Igbawua T, Chang Q, Zhang D, Yao F. 2018a. Evaluation and improvement of the daily boreal ecosystem productivity simulator in simulating gross primary productivity at 41 flux sites across Europe. Ecological Modelling368, 205–232.

Zhang S, Zhang J, Bai Y, Yao F. 2018b. Extracting winter wheat area in Huanghuaihai Plain using MODIS-EVI data and phenology difference avoiding threshold. Transactions of the Chinese Society of Agricultural Engineering34, 150–158. (in Chinese)

Zhang X, Liu L, Chen X, Xie S, Gao Y. 2019. Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach. Remote Sensing11, 1056.

Zhang X, Qin W, Chen S, Shao L, Sun H. 2017. Responses of yield and WUE of winter wheat to water stress during the past three decades - A case study in the North China Plain. Agricultural Water Management179, 47–54.

Zhang X, Wang S, Sun H, Chen S, Shao L, Liu X. 2013. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: A case study in the North China Plain. European Journal of Agronomy50, 52–59.

Zhang X R, Zhu L, Sun H F, Chu S S. 2020. Validation and inter-comparison of the FY-3B/MERSI LAI product with GLOBMAP and MYD15A2H. International Journal of Remote Sensing41, 9256–9282.

Zhang Z, Lou Y, Moses A O, Li R, Ma L, Li J. 2019. Hyperspectral remote sensing to quantify the flowering phenology of winter wheat. Spectroscopy Letters52, 389–397.

Zheng J, Wang J, Ren W, Tang J, He D, Huang M, Bai H, Wu B. 2020. Modeling the impacts of climate, soil, and cultivar on optimal irrigation amount of winter wheat in the North China Plain. Agronomy Journal112, 1176–1189.

Zhu L. 2019. The study on the calculation of irrigation amount for irrigation event and its application in local area. Ph D thesis, Nanjing University, China. (in Chinese)

Zhu L M, Liu J Z, Zhu A X, Duan Z. 2019. Spatial evaluation of L-band satellite-based soil moisture products in the upper Huai River basin of China. European Journal of Remote Sensing52, 194–205.

Zhu W, Pan Y Z, He H, Yu D Y, Hu H B. 2006. Simulation of maximum light use efficiency for some typical vegetation types in China. Chinese Science Bulletin51, 457–463.

[1] SHAO Rui-xin, YU Kang-ke, LI Hong-wei, JIA Shuang-jie, YANG Qing-hua, ZHAO Xia, ZHAO Ya-li, LIU Tian-xu. The effect of elevating temperature on the growth and development of reproductive organs and yield of summer maize[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1783-1795.
[2] CHEN Ying, LIU Feng-shan, TAO Fu-lu, GE Quan-sheng, JIANG Min, WANG Meng, ZHAO Feng-hua. Calibration and validation of SiBcrop Model for simulating LAI and surface heat fluxes of winter wheat in the North China Plain[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2206-2215.
[3] WANG Dan, LI Guo-rui, ZHOU Bao-yuan, ZHAN Ming, CAO Cou-gui, MENG Qing-feng, XIA Fei, MA Wei, ZHAO Ming. Innovation of the double-maize cropping system based on cultivar growing degree days for adapting to changing weather conditions in the North China Plain[J]. >Journal of Integrative Agriculture, 2020, 19(12): 2997-3012.
[4] CHEN Guang-feng, CAO Hong-zhu, CHEN Dong-dong, ZHANG Ling-bo, ZHAO Wei-li, ZHANG Yu, MA Wen-qi, JIANG Rong-feng, ZHANG Hong-yan, ZHANG Fu-suo. Developing sustainable summer maize production for smallholder farmers in the North China Plain: An agronomic diagnosis method[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1667-1679.
[5] ZHOU Li-li, LIAO Shu-hua, WANG Zhi-min, WANG Pu, ZHANG Ying-hua, YAN Hai-jun, GAO Zhen, SHEN Si, LIANG Xiao-gui, WANG Jia-hui, ZHOU Shun-li. A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1181-1193.
No Suggested Reading articles found!