Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (5): 1436-1443    DOI: 10.1016/S2095-3119(20)63500-6
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetics and fitness costs of resistance to flupyradifurone in Bemisia tabaci from China
WANG Ran1, ZHANG Jia-song2, CHE Wu-nan3, WANG Jin-da2, LUO Chen1
1 Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R.China
2 National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
3 Department of Pesticide Sciences, Shenyang Agricultural University, Shenyang 110866, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

氟吡呋喃酮是蔬菜安全生产过程中防治烟粉虱的新型高效杀虫剂。本研究分别利用田间采集的氟吡呋喃酮抗性种群WH-R(抗性水平约199倍)和室内筛选氟吡呋喃酮抗性种群FLU-SEL(抗性水平约124倍)对抗性遗传方式及相关适合度代价进行了阐明。利用室内敏感种群MED-S分别与WH-R和FLU-SEL开展正反交试验,分别获得MED-S与WH-R的后代F1AF1BF1以及MED-S与FLU-SEL的后代F1C、F1D、F1'。室内毒理测定试验发现WH-R对氟吡呋喃酮的抗性是常染色体,不完全显性遗传;同时发现FLU-SEL对氟吡呋喃酮的抗性是常染色体,不完全隐形遗传。通过对MED-S、WH-R和FLU-SEL的适合度进行评价发现,WH-R和FLU-SEL在生长发育过程中均存在显著适合度代价。相比于MED-S,WH-R和FLU-SEL的相对适合度为0.50和0.65,并均表现出发育历期延长、卵孵化率下降、若虫和伪蛹期存活率降低;此外,WH-R的成虫产卵量显著下降。本研究相关结果表明抗性相关适合度代价有利于延缓田间烟粉虱对氟吡呋喃酮的抗性进化,并对田间烟粉虱治理策略的制订提供理论支持




Abstract  Flupyradifurone is a promising new insecticide used for controlling Bemisia tabaci during vegetable production.  In this study, we assessed the fitness costs and mode of inheritance associated with resistance to flupyradifurone in B. tabaci by comparing the susceptible strain (MED-S) to one field-evolved flupyradifurone-resistant strain (WH-R, with 199-fold resistance) and one laboratory-selected flupyradifurone-resistant strain (FLU-SEL, with 124-fold resistance).  Progenies of reciprocal crosses between WH-R and MED-S (F1A, F1B, and pooled F1), and between FLU-SEL and MED-S (F1C, F1D, and pooled F1’), showed varying degrees of dominance, indicating that resistance to flupyradifurone in WH-R was autosomal and incompletely dominant, yet in FLU-SEL it was autosomal and incompletely recessive.  Furthermore, the development of resistance to flupyradifurone occurred at the expense of fitness costs for the resistant populations.  Compared to the MED-S strain, WH-R showed a relative fitness of 0.50 with significantly prolonged developmental durations and reduced survival rates of the nymphal and pseudopupal stages, as well as decreased fecundity and hatchability.  Similarly, FLU-SEL showed a relative fitness of 0.65 and also demonstrated prolonged developmental durations and reduced survival rates of nymphs and pseudopupae, as well as decreased hatchability in comparison with the MED-S strain.  However, no significant differences in fecundity were observed between MED-S and FLU-SEL.  The present study provides useful knowledge for formulating pest management strategies in the field, which will allow growers to slow the development of resistance to flupyradifurone and to sustainably control B. tabaci.

Keywords:  Bemisia tabaci        flupyradifurone       insecticide resistance       inheritance       fitness costs  
Received: 24 August 2020   Accepted: 11 November 2020
Fund: This study was supported by research grants from the National Natural Science Foundation of China (31972266).
About author:  Correspondence WANG Ran, Tel: +86-10-51505278, E-mail: rwang1105@126.com; WANG Jin-da, Tel: +86-591-83851742, E-mail: jdwang@fafu.edu.cn

Cite this article: 

WANG Ran, ZHANG Jia-song, CHE Wu-nan, WANG Jin-da, LUO Chen . 2022. Genetics and fitness costs of resistance to flupyradifurone in Bemisia tabaci from China. Journal of Integrative Agriculture, 21(5): 1436-1443.

Barbosa P R R, Michaud J P, Bain C L, Torres J B. 2017. Toxicity of three aphicides to the generalist predators Chrysoperla carnea (Neuroptera: Chrysopidae) and Orius insidiosus (Hemiptera: Anthocoridae). Ecotoxicology, 26, 589–599.
De Barro P J, Liu S S, Boykin L M, Dinsdale A B. 2011. Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1–19.
Bass C, Denholm I, Williamson M S, Nauen R. 2015. The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology, 121, 78–87. 
Bouvier J C, Buès R, Boivin T, Boudinhon L, Beslay D, Sauphanor B. 2001. Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): Inheritance and number of genes involved. Heredity, 87, 456–462.
Cahill M, Gorman K, Day S, Denholm I, Elbert A, Nauen R. 1996. Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research, 86, 343–349.
Colares F, Michaud J P, Bain C L, Torres J B. 2017. Relative toxicity of two aphicides to Hippodamia convergens (Coleoptera: Coccinellidae): Implications for integrated management of sugarcane aphid, Melanaphis sacchari (Hemiptera: Aphididae). Journal of Economic Entomology, 110, 52–58.
Coy M R, Bin L, Stelinski L L. 2016. Reversal of insecticide resistance in Florida populations of Diaphorina citri (Hemiptera: Liviidae). Florida Entomologist, 99, 26–32.
Denholm I, Rowland M W. 1992. Tactics for managing pesticide resistance in arthropods: Theory and practice. Annual Review of Entomology, 37, 91–112.
Ejaz M, Afzal M B, Shabbir G, Serrão J E, Shad S A, Muhammad W. 2017. Laboratory selection of chlorpyrifos resistance in an invasive pest, Phenacoccus solenopsis (Homoptera: Pseudococcidae): Cross-resistance, stability and fitness cost. Pesticide Biochemistry and Physiology, 137, 8–14.
Feng K Y, Wen X, He X L, Wei P, Shi L, Yang Y W, He L. 2018. Resistant inheritance and cross-resistance of cyflumetofen in Tetranychus cinnabarinus (Boisduval). Pesticide Biochemistry and Physiology, 148, 28–33.
Feng Y T, Wu Q J, Xu B Y, Wang S L, Chang X L, Xie W, Zhang Y J. 2009. Fitness costs and morphological change of laboratory-selected thiamethoxam resistance in the B-type Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Applied Entomology, 133, 466–472.
Georghiou G P, Taylor C E. 1977. Genetic and biological influences in the evolution of insecticide resistance. Journal of Economic Entomology, 70, 319–323.
Horowitz A R, Gorman K, Ross G, Denholm I. 2003. Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q biotype). Archives of Insect Biochemistry and Physiology, 54, 177–186.
Horowitz A R, Ghanim M, Roditakis E, Nauen R, Ishaaya I. 2020. Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science, 93, 893–910.
Jeschke P, Nauen R, Gutbrod O, Beck M E, Matthiesen S, Haas M, Velten R. 2015. Flupyradifurone (Sivanto™) and its novel butenolide pharmacophore: Structural considerations. Pesticide Biochemistry and Physiology, 121, 31–38.
Jia B, Liu Y, Zhu Y C, Liu X, Gao C, Shen J. 2009. Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pest Management Science, 65, 996–1002.
Kliot A, Ghanim M. 2012. Fitness costs associated with insecticide resistance. Pest Management Science, 68, 1431–1437.
Leite N A, Mendes S M, Santos-Amaya O F, Santos C A, Teixeira T P, Guedes R N, Pereira E J. 2016. Rapid selection and characterization of Cry1F resistance in a Brazilian strain of fall armyworm. Entomologia Experimentalis et Applicata, 158, 236–247.
LeOra Software Polo Plus. 2002. User’s Guide to Probit or Logit Analysis. LeOra Software, Berkeley, CA.
Liang P Z, Ma K S, Chen X W, Tang C Y, Xia J, Chi H, Gao X W. 2019. Toxicity and sublethal effects of flupyradifurone, a novel butenolide insecticide, on the development and fecundity of Aphis gossypii (Hemiptera: Aphididae). Journal of Economic Entomology, 112, 852–858.
Liao J Y, Xue Y Q, Xiao G J, Xie M, Huang S T, You S J, Wyckhuys K A, You M S. 2019. Inheritance and fitness costs of resistance to Bacillus thuringiensis toxin Cry2Ad in laboratory strains of the diamondback moth, Plutella xylostella (L.). Scientific Reports, 9, 6113.
Liao X, Mao K, Ali E, Jin R H, Li Z, Li W H, Li J H, Wan H. 2019. Inheritance and fitness costs of sulfoxaflor resistance in Nilaparvata lugens (Stål). Pest Management Science, 75, 2981–2988.
Liu Z W, Han Z J. 2006. Fitness costs of laboratory-selected imidacloprid resistance in the brown planthopper, Nilaparvata lugens Stål. Pest Management Science, 62, 279–282.
Ma K S, Tang Q L, Xia J, Lv N N, Gao X W. 2019. Fitness costs of sulfoxaflor resistance in the cotton aphid, Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 158, 40–46.
Nauen R, Jeschke P, Velten R, Beck M E, Ebbinghaus-Kintscher U, Thielert W, Wölfel K, Haas M, Kunz K, Raupach G. 2015. Flupyradifurone: A brief profile of a new butenolide insecticide. Pest Management Science, 71, 850–862.
Pan H P, Chu D, Ge D Q, Wang S L, Wu Q J, Xie W, Jiao X G, Liu B M, Yang X, Yang N N, Su Q, Xu B Y, Zhang Y J. 2011. Further spread of and domination by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q on field crops in China. Journal of Economic Entomology, 104, 978–985.
Pu X, Yang Y H, Wu S W, Wu Y D. 2010. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. Pest Management Science, 66, 371–378.
Roditakis E, Stavrakaki M, Grispou M, Achimastou A, Van Waetermeulen X, Nauen R, Tsagkarakou A. 2017. Flupyradifurone effectively manages whitefly Bemisia tabaci MED (Hemiptera: Aleyrodidae) and tomato yellow leaf curl virus in tomato. Pest Management Science, 73, 1574–1584.
Roush R T, McKenzie J A. 1987. Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology, 32, 361–380.
Shen J, Li D Y, Zhang S Z, Zhu X, Wan H, Li J H. 2017. Fitness and inheritance of metaflumizone resistance in Plutella xylostella. Pesticide Biochemistry and Physiology, 139, 53–59.
Smith H A, Giurcanu M C. 2013. Residual effects of new insecticides on egg and nymph densities of Bemisia tabaci (Hemiptera: Aleyrodidae). Florida Entomologist, 96, 504–511.
SPSS (Statistical Product and Service Solutions). 2011. Release 13.0 Version for Windows . Chicago, IL.
Stone B. 1968. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bulletin of the World Health Organization, 38, 325–326.
Wang R, Zhang W, Che W N, Qu C, Li F Q, Desneux N, Luo C. 2017. Lethal and sublethal effects of cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci (Hemiptera: Aleyrodidae) MED. Crop Protection, 91, 108–113.
Wang R, Wang J D, Che W N, Fang Y, Luo C. 2020a. Baseline susceptibility and biochemical mechanism of resistance to flupyradifurone in Bemisia tabaci. Crop Protection, 132, 105132.
Wang R, Wang J D, Che W N, Sun Y, Li W X, Luo C. 2019. Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China. Journal of Integrative Agriculture, 18, 2571–2578.
Wang R, Wang J D, Zhang J S, Che W N, Feng H L, Luo C. 2020b. Characterization of flupyradifurone resistance in the whitefly Bemisia tabaci Mediterranean (Q biotype). Pest Management Science,76, 4286–4292.
Wang X L, Wu S W, Gao W Y, Wu Y D. 2016. Dominant inheritance of field-evolved resistance to fipronil in Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology, 109, 334–338.
Wang Z H, Gong Y J, Chen J C, Su X C, Cao L J, Hoffmann A A, Wei S J. 2018. Laboratory selection for resistance to sulfoxaflor and fitness costs in the green peach aphid Myzus persicae. Journal of Asia-Pacific Entomology, 21, 408–412.
Wang Z Y, Yao M D, Wu Y D. 2009. Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Pest Management Science, 65, 1189–1194.
Wei P L, Che W N, Wang J D, Xiao D, Wang R, Luo C. 2018. RNA interference of glutamate-gated chloride channel decreases abamectin susceptibility in Bemisia tabaci. Pesticide Biochemistry and Physiology, 145, 1–7.
Yang F, Head G P, Price P A, González J C S, Kerns D L. 2020. Inheritance of Bacillus thuringiensis Cry2Ab2 protein resistance in Helicoverpa zea (Lepidoptera: Noctuidae). Pest Management Science, 76, 3676–3684.
Zhang X L, Mao K K, Liao X, He B Y, Jin R H, Tang T, Wan H, Li J H. 2018. Fitness cost of nitenpyram resistance in the brown planthopper Nilaparvata lugens. Journal of Pest Science, 91, 1145–1151.
[1] ZHANG Yan, TIAN Tian, ZHANG Kun, ZHANG You-jun, WU Qing-jun, XIE Wen, GUO Zhao-jiang, WANG Shao-li.

Lack of fitness cost and inheritance of resistance to abamectin based on the establishment of a near-isogenic strain of Tetranychus urticae [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1809-1819.

[2] LI Ran, SUN Xi, LIANG Pei, GAO Xi-wu. Characterization of carboxylesterase PxαE8 and its role in multi-insecticide resistance in Plutella xylostella (L.)[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1713-1721.
[3] ZHANG Xu-dong, GAO Xue-chun, LI Zhi-wei, XU Lu-chun, LI Yi-bo, ZHANG Ren-he, XUE Ji-quan, GUO Dong-wei. The effect of amylose on kernel phenotypic characteristics, starch-related gene expression and amylose inheritance in naturally mutated high-amylose maize[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1554-1564.
[4] BAO Yan-yuan, ZHANG Chuan-xi. Recent advances in molecular biology research of a rice pest, the brown planthopper[J]. >Journal of Integrative Agriculture, 2019, 18(4): 716-728.
[5] WANG Ran, WANG Jin-da, CHE Wu-nan, SUN Yan, LI Wen-xiang, LUO Chen .
Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China
[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2571-2578.
[6] LI Dong-gang, SHANG Xiao-yong, Stuart Reitz, Ralf Nauen, LEI Zhong-ren, Si Hyeock Lee, GAO Yu-lin. Field resistance to spinosad in western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae)[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2803-2808.
[7] HU Zhen-di, FENG Xia, LIN Qing-sheng, CHEN Huan-yu, LI Zhen-yu, YIN Fei, LIANG Pei, GAO Xi-wu. cDNA cloning and characterization of the carboxylesterase pxCCE016b from the diamondback moth, Plutella xylostella L.[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1059-1068.
[8] HAN Liu-sha, LI Zai-feng, WANG Jia-zhen, SHI Ling-zhi, ZHU Lin, LI Xing, LIU Da-qun, Syed J A Shah. Molecular mapping of leaf rust resistance genes in the wheat line Yu 356-9[J]. >Journal of Integrative Agriculture, 2015, 14(7): 1223-1228.
[9] LI Xiu-ying, LANG Zhi-hong, ZHANG Jie, HE Kang-lai, ZHU Li , HUANG Da-fang. Acquisition of Insect-Resistant Transgenic Maize Harboring a Truncated cry1Ah Gene via Agrobacterium-Mediated Transformation[J]. >Journal of Integrative Agriculture, 2014, 13(5): 937-944.
[10] CHEN Dan, ZHANG Jin-peng, WANG Jian-sheng, YANG Xin-ming, LIU Wei-hua, GAO Ai-nong, LI . Inheritance and Availability of High Grain Number Per Spike in Two Wheat Germplasm Lines[J]. >Journal of Integrative Agriculture, 2012, 12(9): 1409-1416.
[11] ZHANG Xin, LI Cheng-qi, WANG Xi-yuan, CHEN Guo-ping, ZHANG Jin-bao , ZHOU Rui-yang. Genetic Analysis of Cryotolerance in Cotton During the Overwintering Period Using Mixed Model of Major Gene and Polygene[J]. >Journal of Integrative Agriculture, 2012, 12(4): 537-544.
[12] SONG Mei-zhen, FAN Shu-li, YUAN Ri-hong, PANG Chao-you , YU Shu-xun. GeneticAnalysisofEarlinessTraits inShortSeasonCotton (Gossypiumhirsutum L.)[J]. >Journal of Integrative Agriculture, 2012, 12(12): 1968-1975.
No Suggested Reading articles found!