Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (12): 3694-3708    DOI: 10.1016/j.jia.2023.09.024
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Physiological and biochemical characteristics of boscalid resistant isolates of Sclerotinia sclerotiorum from asparagus lettuce
SHI Dong-ya1, 2, LI Feng-jie1, ZHANG Zhi-hui1, Xu Qiao-nan2, CAO Ying-ying1, Jane Ifunanya MBADIANYA1, LI Xin1, WANG Jin1, CHEN Chang-jun1#
1 Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R.China
2 Jiangsu Pesticide Research Institute Co., Ltd., Nanjing 210046, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由核盘菌(Sclerotinia sclerotiorum)引起的莴苣菌核病是我国常见的病害。由于缺乏可商业化的品种,目前主要依赖杀菌剂进行防控。啶酰菌胺boscalid, 简称Bos),隶属于琥珀酸脱氢酶抑制剂类(SDHI)杀菌剂,在我国核盘菌防治已有十多年,部分地区出现该药剂对莴苣菌核病的防效下降现象,核盘菌的抗药性状况尚不清楚。为此,本实验室于2019年江苏六个市的莴苣病样中共分离了172株核。采用剂量5 μg mL-1的浓度)法,进行抗药性菌株鉴定,发现对该药剂的低抗BosLR)群体占所检测菌株总数的76.74%。进一步研究表明:BosLR菌株的生物适不低于啶酰菌胺敏感(BosS)菌株大多数BosLR菌株的草酸积累胞外多糖EPS含量BosS菌株增加,但膜透性降低供试的胁迫因子耐受性差异显著;离体防效测定也验证了田间确实存在BosLR的抗药性亚群体;田间存在3对啶酰菌胺的抗性基因型SDHBA11VSDHCQ38RSDHBA11V+SDHCQ38R,该抗性可能由药剂和靶标间的亲和力下降导致;但BosLR菌株对噻呋酰胺、氟唑菌酰羟胺、氟啶胺戊唑醇间均无交互抗性。本研究首次报道了我国莴苣核盘菌对啶酰菌胺存在田间抗性,这对性治理和精准防控具有指导意义



Abstract  

Laboratory mutants of Sclerotinia sclerotiorum (Lib) de Bary, resistant to boscalid, have been extensively characterized.  However, the resistance situation in the lettuce field remains largely elusive.  In this study, among the 172 Ssclerotiorum isolates collected from asparagus lettuce field in Jiangsu Province, China, 132 isolates (76.74%) exhibited low-level resistance to boscalid (BosLR), with a discriminatory dose of 5 μg mL–1.  In comparison to the boscalid-sensitive (BosS) isolates, most BosLR isolates demonstrated a slightly superior biological fitness, as evidenced by data on mycelial growth, sclerotium production and pathogenicity.  Moreover, most BosLR isolates showed comparable levels of oxalic acid (OA) accumulation, increased exopolysaccharide (EPS) content and reduced membrane permeability when compared to the BosS isolates.  Nevertheless, their responses to distinct stress factors diverged significantly.  Furthermore, the effectiveness of boscalid in controlling BosLR isolates on radish was diminished compared to its efficacy on BosS isolates.  Genetic mutations were identified in the SDH genes of BosLR isolates, revealing the existence of three resistant genotypes: I (A11V at SDHB, SDHBA11V), II (Q38R at SDHC, SDHCQ38R) and III (SDHBA11V+SDHCQ38R).  Importantly, no cross-resistance was observed between boscalid and other fungicides such as thifluzamide, pydiflumetofen, fluazinam, or tebuconazole.  Our molecular docking analysis indicated that the docking total score (DTS) of the type I resistant isolates (1.3993) was lower than that of the sensitive isolates (1.7499), implying a reduced affinity between SDHB and boscalid as a potential mechanism underlying the boscalid resistance in Ssclerotiorum.  These findings contribute to an enhanced comprehension of boscalid’s mode of action and furnish valuable insights into the management of boscalid resistance.

Keywords:  Sclerotinia sclerotiorum        Boscalid        Asparagus lettuce        SDHBA11V        SDHCQ38R  
Received: 10 May 2023   Accepted: 16 July 2023
Fund: This work was supported by the Jiangsu Provincial Key Research and Development, China (BE2021361), the Jiangsu Agriculture Science and Technology Innovation Fund ((CX(21)2037 and CX(22)3072)), and the National Natural Science Foundation of China (31672065).
About author:  SHI Dong-ya, E-mail: 2018202051@njau.edu.cn; #Correspondence CHEN Chang-jun, E-mail: changjun-chen@njau.edu.cn

Cite this article: 

SHI Dong-ya, LI Feng-jie, ZHANG Zhi-hui, XU Qiao-nan, CAO Ying-ying, Jane Ifunanya MBADIANYA, LI Xin, WANG Jin, CHEN Chang-jun. 2023. Physiological and biochemical characteristics of boscalid resistant isolates of Sclerotinia sclerotiorum from asparagus lettuce. Journal of Integrative Agriculture, 22(12): 3694-3708.

Avenot H F, Michailides T J. 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection29, 643–651.

Avenot H F, Morgan D P, Michailides T J. 2008. Resistance to pyraclostrobin, boscalid and multiple resistance to Pristine® (pyraclostrobin+boscalid) fungicide in Alternaria alternata causing alternaria late blight of pistachios in California. Plant Pathology57, 135–140.

Bolton M D, Thomma B P H J, Nelson B D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology7, 1–16.

Chen Z H, Gao T, Liang S P, Liu K X, Zhou M G, Chen C J. 2014. Molecular mechanism of resistance of Fusarium fujikuroi to benzimidazole fungicides. Fems Microbiology Letters357, 77–84.

Derbyshire M, Denton-giles M, Hegedus D, Seifbarghy S, Rollins J, van Kan J, Seidl M, Faino L, Mbengue M, Navaud O, Raffaele S, Hammond-Kosack K, Heard S, Oliver R. 2017. The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biology and Evolution9, 593–618.

Duan Y B, Ge C Y, Liu S M, Chen C J, Zhou M G. 2013. Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorumPesticide Biochemistry & Physiology106, 61–67.

Duan Y B, Li T, Xiao X M, Wu J, Li S K, Wang J X, Zhou M G. 2018. Pharmacological characteristics of the novel fungicide pyrisoxazole against Sclerotinia sclerotiorumPesticide Biochemistry & Physiology149, 61–66.

Duan Y B, Liu S M, Ge C Y, Feng X J, Chen C J, Zhou M G. 2012. In vitro inhibition of Sclerotinia sclerotiorum by mixtures of azoxystrobin, SHAM, and thiram. Pesticide Biochemistry & Physiology103, 101–107.

Glättli A, Stammler G, Schlehuber S, 2009. Mutations in the target proteins of succinate-dehydrogenase inhibitors (SDHI) and 14delta-demethylase inhibitors (DMI) conferring changes in the sensitivity - Structural insights from molecular modelling. In: Ninth International Conference on Plant Diseases. AFPP, Paris, France. pp. 670–681.

Godoy G, Steadman J R, Dickman M B, Dam R. 1990. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgarisPhysiological & Molecular Plant Pathology37, 179–191.

Harel A, Bercovich S, Yarden O. 2006. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner. Molecular Plant–Microbe Interactions19, 682–693.

Hensen E F, Bayley J P. 2011. Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma. Familial Cancer10, 355–363.

Honda Y, Matsuyama T, Irie T, Watanable T, Kuwahara M. 2000. Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatusCurrent Genetics37, 209–212.

Hou Y P, Mao X W, Lin S P, Song X S, Duan Y B, Wang J X, Zhou M G. 2018. Activity of a novel succinate dehydrogenase inhibitor fungicide pyraziflumid against Sclerotinia sclerotiorumPesticide Biochemistry & Physiology145, 22–28.

Hu S M, Zhang J, Zhang Y C, He S, Zhu F X. 2018. Baseline sensitivity and toxic actions of boscalid against Sclerotinia sclerotiorumCrop Protection110, 83–90.

Hua X W, Liu W R, Su Y Y, Liu X H, Liu J B, Liu N N, Wang G Q, Jiao X Q. Fan X Y, Xue C M, Liu Y, Liu M. 2020. Studies on the novel pyridine sulfide containing SDH based heterocyclic amide fungicide. Pest Management Science76, 2368–2378.

Kuang J, Hou Y P, Wang J X, Zhou M G. 2011. Sensitivity of Sclerotinia sclerotiorum to fludioxonil: In vitro determination of baseline sensitivity and resistance risk. Crop Protection30, 876–882.

Li S, Li X, Zhang H, Wang Z, Xu H. 2021. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors. Bioorganic Medicinal Chemistry50, 116476.

Ma H X, Feng X J, Chen Y, Chen C J, Zhou M G. 2009. Occurrence and characterization of dimethachlon insensitivity in Sclerotinia sclerotiorum in Jiangsu Province of China. Plant Disease93, 36–42.

Matheron M E, Porchas M. 2004. Activity of boscalid, fenhexamid, fluazinam, fludioxonil, and vinclozolin on growth of sclerotinia minor and Ssclerotiorum and development of lettuce drop. Plant Disease88, 665–668.

Mcgrath M T, Miazzi M M. 2008. Sensitivity of Podosphaera xanthii to registered fungicides at-risk for resistance related to their efficacy for powdery mildew in pumpkin. Phytopathology98, S102.

Miles T D, Fairchild K L, Merlington A, Kirk W W, Rosenzweig N, Wharton P S. 2013. First report of boscalid and penthiopyrad-resistant isolates of Alternaria solani causing early blight of potato in Michigan. Plant Disease97, 1655.

Shao W Y, Wang J R, Wang H Y, Wen Z Y, Liu C, Zhang Y, Zhao Y F, Ma Z H. 2022. Fusarium graminearum FgSdhC1 point mutation A78V confers resistance to the succinate dehydrogenase inhibitor pydiflumetofen. Pest Management Science78, 1780–1788.

Sierotzki H, Scalliet G. 2013. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology103, 880–887.

Skinner W, Bailey A, Renwick A, Keon J, Gurr S, Hargreaves. 1998. A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicolaCurrent Genetics34, 393–398.

Stammler G, Benzinger G, Speakman J. 2007a. A rapid and reliable method for monitoring the sensitivity of Sclerotinia sclerotiorum to boscalid. Journal of Phytopathology155, 746–748.

Stammler G, Brix H D, Glttli A, Semar, Schoefl U. 2007b. Biological properties of the carboxamide boscalid including recent studies on its mode of action. In: Proceedings of the BCPC XVI International Plant Protection Congress. British Crop Protection Council Publications, Alton. pp. 16–21.

Stammler G, Glättli A, Koch A, Schlehuber S. 2010. Mutations in the target protein conferring resistance to SDHI fungicides. In: Dehne H W, Deising H B, Gisi U, Kuck K H, Russell P E, Lyr H, eds, Modern Fungicides and Antifungal Compounds VI. Proceedings of the 16th International Reinhardsbrunn Symposium. CPG Selbstverlag, Braunschweig, Germany. pp. 195–198.

Stammler G, Speakman J. 2006. Microtiter method to test the sensitivity of Botrytis cinerea to boscalid. Journal of Phytopathology154, 508–510.

Wang J X, Ma H X, Chen Y, Zhu X F, Yu W Y, Tang Z H, Chen C J, Zhou M G. 2009. Sensitivity of Sclerotinia sclerotiorum from oilseed crops to boscalid in Jiangsu Province of China. Crop Protection28, 882–886.

Wang Y, Duan Y B, Wang J X, Zhou M G. 2015a. A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorumMolecular Plant Pathology16, 653–661.

Wang Y, Duan Y B, Zhou M G. 2015b. Molecular and biochemical characterization of boscalid resistance in laboratory mutants of Sclerotinia sclerotiorumPlant Pathology64, 101–108.

Wang Y, Duan Y B, Zhou M G. 2016. Baseline sensitivity and efficacy of fluazinam in controlling Sclerotinia stem rot of rapeseed. European Journal of Plant Pathology144, 337–343.

Wang Y, Hou Y P, Chen C J, Zhou M G. 2014. Detection of resistance in Sclerotinia sclerotiorum to carbendazim and dimethachlon in Jiangsu Province of China. Australasian Plant Pathology43, 307–312.

Wei W, Mesquita A C O, Figueiro A D A, Wu X, Manjunatha S, Wickland D P, Hudson M E, Juliatti F C, Clough S J. 2017. Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil. BMC Genomics18, 849.

Xu D F, Li X L, Pan Y M, Dai Y L, Gao Z M. 2014. Genetic diversity and pathogenicity differentiation of Sclerotinia sclerotiorum on rapeseed (Brassica napus L.) in Anhui Province, China. Genetics & Molecular Research13, 10704–10713.

Zheng Z, Gao T, Hou Y, Zhou M G. 2013. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearumFEMS Microbiology Letters349, 88–98.

Zheng Z, Zhang Y, Wu X Y, Yang H, Ma L J, Zhou M G. 2017. FoMyo5 motor domain substitutions (Val151 to Ala and Ser418 to Thr) cause natural resistance to fungicide phenamacril in Fusarium oxysporumPesticide Biochemistry & Physiology147, 119–126.

Zhou F, Zhu F X, Zhang X L, Zhang A S. 2014. First report of dimethachlon resistance in field isolates of Sclerotinia sclerotiorum on oilseed rape in Shaanxi Province of northwestern China. Plant Disease98, 568.

No related articles found!
No Suggested Reading articles found!