Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (8): 2197-2210    DOI: 10.1016/S2095-3119(21)63658-4
Special Issue: 油料作物合辑Oil Crops
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean
ZOU Jia-nan1*, ZHANG Zhan-guo1*, KANG Qing-lin1*, YU Si-yang1, WANG Jie-qi1, CHEN Lin1, LIU Yan-ru1, MA Chao1, ZHU Rong-sheng1, ZHU Yong-xu1, DONG Xiao-hui2, JIANG Hong-wei1, 3, WU Xiao-xia1, WANG Nan-nan1, 4, HU Zhen-bang1, QI Zhao-ming1, LIU Chun-yan1, CHEN Qing-shan1, XIN Da-wei1, WANG Jin-hui1 
1 College of Agriculture, Northeast Agricultural University, Harbin 150030, P.R.China
2 Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua 152000, P.R.China
3 Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, P.R.China
4 Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  小麦抗旱相关基因TaPYL4的功能分析及标记开发

Abstract  Soybean is one of the most important food crops worldwide.  Like other legumes, soybean can form symbiotic relationships with Rhizobium species.  Nitrogen fixation of soybean via its symbiosis with Rhizobium is pivotal for sustainable agriculture.  Type III effectors (T3Es) are essential regulators of the establishment of the symbiosis, and nodule number is a feature of nitrogen-affected nodulation.  However, genes encoding T3Es at quantitative trait loci (QTLs) related to nodulation have rarely been identified. Chromosome segment substitution lines (CSSLs) have a common genetic background but only a few loci with heterogeneous genetic information; thus, they are suitable materials for identifying candidate genes at a target locus.  In this study, a CSSL population was used to identify the QTLs related to nodule number in soybean.  Single nucleotide polymorphism (SNP) markers and candidate genes within the QTLs interval were detected, and it was determined which genes showed differential expression between isolines.  Four candidate genes (GmCDPK28, GmNAC1, GmbHLH, and GmERF5) linked to the SNPs were identified as being related to nodule traits and pivotal processes and pathways involved in symbiosis establishment.  A candidate gene (GmERF5) encoding a transcription factor that may interact directly with the T3E NopAA was identified.  The confirmed CSSLs with important segments and candidate genes identified in this study are valuable resources for further studies on the genetic network and T3Es involved in the signaling pathway that is essential for symbiosis establishment. 
Keywords:  soybean       Type III effectors        nodule number        chromosome segment substitution lines  
Received: 26 November 2020   Accepted: 19 February 2021
Fund: Financial support was received from the National Natural Science Foundation of China (32070274, 32072014 and 31971899), the China Postdoctoral Science Foundation (2020M681072), the Natural Science Foundation for the Excellent Youth Scholars of Heilongjiang Province, China (YQ2019C008), the Europe Horizon 2020 (EUCLEG and 727312), the Youth Science and Technology Innovation Leader, China (2018RA2172), the National Key Research & Development Program of China (2016YFD0100500, 2016YFD0100300 and 2016YFD0100201), and the Heilongjiang Postdoctoral Science Foundation, China (LBH-Q16014). 
About author:  Correspondence CHEN Qing-shan, Tel: +86-451-55191945, Fax: +86-451-55191863, E-mail: qshchen@126.com; XIN Da-wei, Tel: +86-451-55191945, Fax: +86-451-55190153, E-mail: xdawei@163.com; WANG Jin-hui, Tel: +86-451-55191945, Fax: +86-451-55190153, E-mail: jinhuiwang113@126.com * These authors contributed equally to this study.

Cite this article: 

ZOU Jia-nan, ZHANG Zhan-guo, KANG Qing-lin, YU Si-yang, WANG Jie-qi, CHEN Lin, LIU Yan-ru, MA Chao, ZHU Rong-sheng, ZHU Yong-xu, DONG Xiao-hui, JIANG Hong-wei, WU Xiao-xia, WANG Nan-nan, HU Zhen-bang, QI Zhao-ming, LIU Chun-yan, CHEN Qing-shan, XIN Da-wei, WANG Jin-hui. 2022. Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean. Journal of Integrative Agriculture, 21(8): 2197-2210.

Barrett J C, Fry B, Maller J D M J, Daly M J. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21, 263–265.
Cao Y R, Halane M K, Gassmann W, Stacey G. 2017. The role of plant innate immunity in the legume–Rhizobium symbiosis. Annual Review of Plant Biology, 68, 535–561.
Dai W J, Zeng Y, Xie Z P, Staehelin C. 2008. Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234. Journal of Bacteriology, 190, 5101–5110. 
Deakin J W, Broughton J W. 2009. Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems. Nature Reviews Microbiology, 7, 312–320.
D’Haeseleer K Den Herder G, Laffont C, Plet J, Mortier V, Lelandais-Briere C, Bodt D S, Keyser D A, Crespi M, Holsters M, Frugier F, Goormachtig S. 2011. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots. New Phytologist, 191, 647–661.
Diédhiou I, Diouf D. 2018. Transcription factors network in root endosymbiosis establishment and development. World Journal of Microbiology and Biotechnology, 34, 1–14.
Dorival-García N, Galbiati F, Kruell R, Kovasy R, Dunne S O, D’Silva K, Bones J. 2020. Identification of additives in polymers from single-use bioprocessing bags by accelerated solvent extraction and ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. Talanta, 219, 121198.
Duhame V, Vandenkoornhuyse P. 2013. Sustainable agriculture: Possible trajectories from mutualistic symbiosis and plant neodomestication. Trends in Plant Science, 18, 597–600.
Figurski D H, Helinski D R. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proceedings of the National Academy of Sciences of the United States of America, 76, 1648–1652.
Gargantini P R, Gonzalez-Rizzo S, Chinchilla D, Raices M, Giammaria V, Ulloa R M, Frugier F, Crespi M D A. 2006. CDPK isoform participates in the regulation of nodule number in Medicago truncatula. The Plant Journal, 48, 843–856. 
Gourion B, Berrabah F, Ratetm P, Stacey G. 2015. Rhizobium-legume symbioses: The crucial role of plant immunity. Trends in Plant Science, 20, 186–194. 
Hu R B, Fan C M, Li H, Zhang Q Z, Fu Y F. 2009. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Molecular Biology, 10, 93–93. 
Hwang S, Ray J D, Cregan P B, King C A, Davies M K, Purcell L C. 2014 Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L. [Merr.]). Euphytica, 195, 419–434.
Jiang L, Sun L, Ye M, Wang J, Wang Y, Bogard M, Wu R. 2019. Functional mapping of N deficiency-induced response in wheat yield-component traits by implementing high-throughput phenotyping. The Plant Journal, 97, 1105–1119.
Jiménez-Guerrero I, Perez-Montano F, Medina C, Ollero F J, Lopez-Baena F J. 2015. NopC is a rhizobium-specific type 3
secretion system effector secreted by Sinorhizobium (Ensifer) fredii HH103. PLoS ONE, 10, e0142866.
Jiménez-Guerrero I, Perez-Montano F, Medina C, Ollero F J, Lopez-Baena F J. 2017. The Sinorhizobium (Ensifer) fredii HH103 nodulation outer protein NopI is a determinant for efficient nodulation of soybean and cowpea plants. Applied and Environmental Microbiology, 83, doi: 10.1128/AEM.02770-16.
Jiménez-Guerrero I, Pérez-Montaño F, Zdyb A, Beutler M, Werner G, Göttfert M, Ollero J F, Vinardell J M, López-Baena J F. 2019. GunA of Sinorhizobium (Ensifer) fredii HH103 is a T3SS-secreted cellulase that differentially affects symbiosis with cowpea and soybean. Plant and Soil, 435, 15–26. 
Kouchi H, Hata S. 1993. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Molecular Genetics and Genomics, 238, 106–119.
Kusakabe S, Higasitani N, Kaneko T, Yasuda M, Miwa H, Okazaki S, Saeki K, Higashitani A, Sato S. 2020. Lotus accessions possess multiple checkpoints triggered by different type III secretion system effectors of the wide-host-range symbiont Bradyrhizobium elkanii USDA61. Microbes and Environments, 35, ME19141
Kwon S I, Kim S H, Bhattacharjee S, Noh J J, Gassmann W. 2009. SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors. The Plant Journal, 57, 109–119.
Laflamme B, Dillon M M, Martel A, Almeida R N D, Desveaux D, Guttman D S. 2020 The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science, 367, 763–768. 
Li M, Li H H, Zhang L Y, Wang J K. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269–283.
Li J, Zhang B, Li X, Yi Y, Shi F, Guo J, Gao Z. 2019. Effects of typical soybean meal type on the properties of soybean-based adhesive. International Journal of Adhesion and Adhesives, 90, 15–21.
Machado F B, Moharana K C, Almeida-Silva F, Gazara R K, Pedrosa-Silva F, Coelho F S, Grativol C, Venancio T M. 2020. Systematic analysis of 1298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas. The Plant Journal, 103, 1894–1909.
Margaret I, Becker A, Blom J, Bonilla I, Goesmann A, Gottfert M, Lloret J, Mittard-Runte V, Ruckert C, Ruiz-Sainz J E. 2011. Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. Journal of Bacteriology, 155, 11–19.
Moffat C S, Ingle R A, Wathugala D L, Saunders N J, Knight H, Knight M R. 2012. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against botrytis cinerea in Arabidopsis. PLoS ONE, 7, e35995. 
Nagalakshmi U, Waern K, Snyder M. 2010. RNA-Seq: A method for comprehensive transcriptome analysis. Current Protocols in Molecular Biology, 89, 11–13.
Oldroyd E D G, Leyser O. 2020. A plant’s diet, surviving in a variable nutrient environment. Science, 368, 1095–9203.
Puhar A, Sansonetti J P. 2014. Type III secretion system. Current Biology, 24, R784–R791.
Quandt J, Hynes M F. 1993. Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene, 127, 15–21.
Roy S, Liu W, Nandety R S, Crook A, Mysore K S, Pislariu C I. 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. The Plant Cell, 132, 15–41.
Schütze K, Harter K, Chaban C. 2009. Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods in Molecular Biology, 479, 189–202. 
Shi Y, Zhang Z, Wen Y, Yu G, Zou J, Huang S, Wang J, Zhu J. 2020. RNA sequencing-associated study identifies gmdrr1 as positively regulating the establishment of symbiosis in soybean. Molecular Plant–Microbe Interactions, 33, 798–807. 
Skorpil P, Saad M M, Boukli N M, Kobayashi H, Ares-Orpel F, Broughton W J, Deakin W J. 2010. NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Molecular Microbiology, 57, 1304–1317. 
Son G H, Wan J, Kim H J, Nguyen X C, Chung W S, Hong J C, Stacey G. 2012. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Molecular Plant–Microbe Interactions, 25, 48–60. 
Sugawara M, Takahashi S, Umehara Y, Iwano H, Tsurumaru H, Odake H, Suzuki Y, Kondo H, Konno Y, Yamakawa T. 2018. Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity. Nature Communications, 9, 3139–3151. 
Tahir J, Rashid M, Afzal A J. 2019. Post-translational modifications in effectors and plant proteins involved in host-pathogen conflicts. Plant Pathology, 68, 628–644. 
Triplett L R, Shidore T, Long J, Miao J M, Wu S C, Han Q, Zhou C H, Ishihara H, Li J Y, Zhao B Y. 2016. AvrRxo1 is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverse environmental contexts. PLoS ONE, 11, e0158856. 
Viprey V, Del Greco A, Golinowski W, Broughton W J, Perret X. 1998. Symbiotic implications of type III protein secretion machinery in rhizobium. Molecular Microbiology, 28, 1381–1389.
Waki T, Lee S Y, Niikura T, Iwakura T, Dogaki Y, Okumachi E, Kurosaka M. 2016. Profiling microRNA expression during fracture healing. BMC Musculoskeletal Disorders, 17, 1–8.
Wang J, Wang J, Ma C, Zhou Z, Yang D, Zheng J, Xin D. 2020. QTL mapping and data mining to identify genes associated with the Sinorhizobium fredii HH103 T3SS effector NopD in soybean. Frontiers in Plant Science, 11, 453.
Wang J H, Wang J Q, Liu C Y, Ma C, Li C Y, Zhang Y J, Qi Z M, Zhu R S, Shi Y, Zou J N. 2018. Identification of soybean genes whose expression is affected by the Ensifer fredii HH103 effector protein NopP. International Journal of Molecular Sciences, 19, 3438–3452. 
Wang X, Fan C, Zhang X, Zhu J, Fu Y F. 2013. BioVector, a flexible system for gene specific-expression in plants. BMC Plant Biology, 13, 198– 207. 
Xin D W, Liao S, Xie Z P, Hann D R, Steinle L, Boller T, Staehelin C. 2012. Functional Analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathogens, 8, e1002707. 
Xin D W, Qi Z M, Jiang H W, Hu Z B, Zhu R S, Hu J H, Han H Y, Hu G H, Liu C Y, Chen Q S. 2016. QTL location and epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS ONE, 11, e0149380.
Yasuda M, Miwa H, Masuda S, Takebayashi Y, Sakakibara H, Okazaki S. 2016. Effector-triggered immunity determines host genotype-specific incompatibility in legume–rhizobium symbiosis. Plant and Cell Physiology, 57, 1791–1800.
Yu H X, Xiao A F, Dong R, Fan Y Q, Zhang X P, Liu C, Wang C, Zhu H, Duanmu D Q, Cao Y R. 2018. Suppression of innate immunity mediated by the CDPK-Rboh complex is required for rhizobial colonization in Medicago truncatula nodules. New Phytologist, 220, 425–434. 
Zhang D, Tu S, Stubna M, Wu W S, Huang W C, Weng Z, Lee H C. 2018. The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science, 359, 587–592.
Zhou Z, Lakhssassi N, Cullen M A, El Baz A, Vuong T D, Nguyen H T, Meksem K. 2019. Assessment of phenotypic variations and correlation among seed composition traits in mutagenized soybean populations. Genes, 10, 975.
Zhu Z, Sun B, Wei J, Cai W, Huang Z, Chen C, Lei J. 2019. Construction of a high density genetic map of an interspecific cross of Capsicum chinense and Capsicum annuum and QTL analysis of floral traits. Scientific Reports, 9, 1–14.
[1] GAO Hua-wei, YANG Meng-yuan, YAN Long, HU Xian-zhong, HONG Hui-long, ZHANG Xiang, SUN Ru-jian, WANG Hao-rang, WANG Xiao-bo, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Identification of tolerance to high density and lodging in short petiolate germplasm M657 and the effect of density on yield-related phenotypes of soybean[J]. >Journal of Integrative Agriculture, 2023, 22(2): 434-446.
[2] LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions[J]. >Journal of Integrative Agriculture, 2022, 21(2): 326-335.
No Suggested Reading articles found!