Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 11 Issue (2): 269-280    DOI: 10.1016/S1671-2927(00)8544
SECTION 3: MOLECULAR CHARACTERIZATION OF Bemisia tabaci Advanced Online Publication | Current Issue | Archive | Adv Search |
A Roadmap for Whitefly Genomics Research: Lessons from Previous Insect Genome Projects
 Owain Rhys Edwards , Alexie Papanicolaou
1.CSIRO Ecosystem Sciences, Wembley, WA 6913, Australia
2.CSIRO Ecosystem Sciences, Canberra, ACT 2601, Australia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Due to evolving molecular and informatics technologies, modern genome sequencing projects have more different characteristics than what most biologists have become accustomed to during the capillary-based sequencing era. In this paper, we explore the characteristics that made past insect genome projects successful and place them in the context of next-generation sequencing. By taking into account the intricacies of whitefly biology and the community, we present a roadmap for whitefly-omics, which focuses on the formation of an international consortium, deployment of informatic platforms and realistic generation of reference sequence data.

Abstract  Due to evolving molecular and informatics technologies, modern genome sequencing projects have more different characteristics than what most biologists have become accustomed to during the capillary-based sequencing era. In this paper, we explore the characteristics that made past insect genome projects successful and place them in the context of next-generation sequencing. By taking into account the intricacies of whitefly biology and the community, we present a roadmap for whitefly-omics, which focuses on the formation of an international consortium, deployment of informatic platforms and realistic generation of reference sequence data.
Keywords:  whole genome sequencing      next generation sequencing      transcriptome      genome consortium      white paper  
Received: 21 April 2011   Accepted:
Fund: 

This work was supported by the CSIRO Office of the Chief Executive (OCE), Australia.

Corresponding Authors:  Correspondence Owain Rhys Edwards, Tel: +61-8-93336401, Fax: +61-8-93336646, E-mail: Owain.Edwards@csiro.au   

Cite this article: 

Owain Rhys Edwards , Alexie Papanicolaou. 2012. A Roadmap for Whitefly Genomics Research: Lessons from Previous Insect Genome Projects. Journal of Integrative Agriculture, 11(2): 269-280.

[1]Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, et al. 2000. The genome sequence of Drosophila melanogaster. Science, 287, 2185-2195.

[2]Arensburger P, Megy K, Waterhouse R M, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, et al. 2010. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science, 330, 86-88.

[3]Ashburner M A, Drysdale R. 1994. FlyBase-The Drosophila genetic database. Development, 120, 2077-2079.

[4]Balding D J. 2006. A tutorial on statistical methods for population association studies. Nature Review Genetics, 7, 781-791.

[5]Bi J L, Toscano N C. 2007. Current status of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in Southern California. Pest Management Science, 63, 747-752.

[6]Bonasio R, Zhang G, Ye C, Mutti N S, Fang X, Qin N, Donahue G, Yang P, Li Q, Li C, et al. 2010. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science, 329, 1068-1071.

[7]Bos J I, Prince D, Pitino M, Maffei M E, Win J, Hogenhout S A. 2010. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genetics, 18, e1001216.

[8]Carolan J C, Caragea D, Reardon K T, Mutti N S, Dittmer N, Pappan K, Cui F, Castaneto M, Poulain J, Dossat C, et al. 2011. Predictor effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): A dual transcriptomic/proteomic approach. Journal of Proteome Research, 10, 1505-1518.

[9]Chen S, Yang P, Jiang F, Wei Y, Ma Z, Kang L. 2010. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS ONE, 5, e15633. Czosnek H, Brown J K. 2010. The whitefly genome - White paper: A proposal to sequence multiple genomes of Bemisia tabaci. In: Stansly P A, Naranjo S E, eds., Bemisia, Bio-Nomics and Management of a Global Pest. Springer Science, Dordrecht, The Netherlands. pp. 503-532.

[10]De Barro P J, Liu S S, Boykin L M, Dinsdale A B. 2011. Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1-19.

[11]Dowell R D, Jokerst R M, Day A, Eddy S R, Stein L. 2001. The distributed annotation system. BMC Bioinformatics, 2, 7. Drosophila 12 Genomes Consortium. 2007. Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450, 203-218.

[12]Gao L L, Anderson J P, Klingler J, Edwards O R, Singh K B. 2007. Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Molecular Plant Microbe Interactions, 20, 82-93.

[13]Gao L L, Kamphuis L G, Kakar K, Edwards O R, Udvardi M, Singh K B. 2010. Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling. New Phytologist, 186, 980-994.

[14]Ghanim M, Kontsedalov S. 2007. Gene expression in pyriproxyfen-resistant Bemisia tabaci Q biotype. Pest Management Science, 63, 776-783.

[15]Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A, Dinant S, Girousse, Faucher M, Bonnemain J L. 2010. Compatible plant-aphid interactions: How aphids manipulate plant responses. Comptes Rendus Biologies, 333, 516-523.

[16]Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. 2011. Full length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644-652.

[17]Holt R A, Subramanian G M, Halpern A, Sutton G G, Charlab R, Nusskern D R, Wincker P, Clark A G, Ribeiro J M C, Wides R, et al. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298, 129-149.

[18]Karatolos N, Pauchet Y, Wilkinson P, Chauhan R, Denholm I, Gorman K, Nelson D R, Bass C, Ffrench-Constant R H, Williamson M S. 2011. Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. BMC Genomics, 12, 56.

[19]Kempema L A, Cui X, Holzer F M, Walling L L. 2007. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology, 143, 849-865.

[20]Kirkness E F, Haas B J, Sun W, Braig H R, Perotti M A, Clark J M, Lee S H, Robertson H M, Kennedy R C, Elhaik E, et al. 2010. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. PNAS, 107, 12168-12173.

[21]Leshkowitz D, Gazit S, Reuveni E, Ghanim M, Czosnek H, McKenzie C, Shatters Jr R L, Brown J K. 2006. Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and nonviruliferous) cDNA libraries. BMC Genomics, 7, 79. Liu S S, Colvin J, De Barro P J. 2012. Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? Journal of Integrative Agriculture, 11, 176-186.

[22]Luan J B, Li J M, Varela N, Wang Y L, Li F F, Bao Y Y , Zhang C X, Liu S S, Wang X W. 2011. Global analysis of the transcriptional response of whitefly to Tomato Yellow Leaf Curl China Virus reveals the relationship of coevolved adaptations. Journal of Virology, 85, 3330- 3340.

[23]Mahadav A, Gerling D, Gottlieb Y, Czosnek H, Ghanim M. 2008. Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci. BMC Genomics, 9, 342. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, et al. 2004. The genome sequence of silkworm, Bombyx mori. DNA Research, 11, 27-35.

[24]Nauen R, Denholm I. 2005. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Archives of Insect Biochemistry and Physiology, 58, 200-215.

[25]Nene V, Wortman J R, Lawson D, Haas B, Kodira C, Tu Z, Loftus B, Xi Z, Megy K, Grabherr M, et al. 2007. Genome sequence of Aedes aegyptii, a major arbovirus vector. Science, 316, 1718-1723.

[26]Panagiotou O A, Evangelou E, Ioannidis J P A. 2010. Genome-wide significant associations for variants with minor allele frequency of 5% or less - an overview: A HuGE review. American Journal of Epidemiology, 172, 869-889.

[27]Smith C D, Zimin A, Holt C, Abouheif E, Benton R, Cash E, Croset V, Currie C R, Elhaik E, Elsik C G, et al. 2011. Draft genome of the globally widespread and invasive argentine ant (Linepithema humile). Proceedings of the National Academy of Sciences of the USA, 108, 5673- 5678.

[28]Smith C R, Smith C D, Robertson H M, Helmkampf M, Zimin A, Yandell M, Holt C, Hu H, Abouheif E, Benton R, eds. 2011. Draft genome of the red harvester ant Pogonomyrmex barbatus. Proceedings of the National Academy of Sciences of the USA, 108, 5667-5672.

[29]The Honeybee Genome Sequencing Consortium. 2006. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443, 931-949.

[30]The International Aphid Genomics Consortium. 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology, 8, 1-24.

[31]The International Silkworm Genome Consortium. 2008. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 38, 1036-1045.

[32]Thompson G A, Goggin F L. 2006. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Journal of Experimental Botany, 57, 755-756.

[33]Tribolium Genome Sequencing Consortium. 2008. The genome of the model beetle and pest Tribolium castaneum. Nature, 452, 949-955.

[34]de Vos M, Jander G. 2009. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environment, 32, 1548-1560.

[35]Walling L L. 2008. Avoiding effective defenses: Strategies employed by phloem-feeding insects. Plant Physiology, 146, 859-866.

[36]Wang X W, Luan J B, Li J M, Bao Y Y, Zhang C X, Liu S S. 2010. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics, 11, 400.

[37]Werren J H, Richard S, Desjardins C A, Niehuis O, Gadau J, Colbourne J K, The Nasonia Genome Working Group. 2008. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science, 327, 343-349.

[38]Wetterstrand K A. 2011. DNA Sequencing Costs: Data from the NHGRI Large-Scale Genome Sequencing Program. [2011-4-11].

[39]http://www.genome.gov/sequencingcosts Will T, Tjallingii W F, Thonnessen A, van Bel A J E. 2007. Molecular sabotage of plant defense by aphid saliva. Proceedings of the National Academy of Sciences of the USA, 104, 10536-10541.

[40]Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt B G, Ingram K K, Falquet L, Nipitwattanaphon M, Gotzek D, et al. 2011. The genome of the fire ant Solenopsis invicta. Proceedings of the National Academy of Sciences of the USA, 108, 5679-5684.

[41]Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, et al. 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306, 1937-1940.
[1] Weiqi Guo, Di Wang, Xinyu Wang, Zhiyang Wang, Hong Zhu, Jiangang Hu, Beibei Zhang, Jingjing Qi, Mingxing Tian, Yanqing Bao, Na Li, Wanjiang Zhang, Shaohui Wang. Identification and characterization of a plasmid co-harboring blaCTX-M-55 and blaTEM-141 in Escherichia albertii from broiler in China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3212-3221.
[2] Xuehao Zhang, Qiuling Zheng, Yongjiang Hao, Yingying Zhang, Weijie Gu, Zhihao Deng, Penghui Zhou, Yulin Fang, Keqin Chen, Kekun Zhang. Physiology and transcriptome profiling reveal the drought tolerance of five grape varieties under high temperatures[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3055-3072.
[3] Xinyi Mao, Xuan Zhao, Zhi Luo, Ao He, Meng Yang, Mengjun Liu, Jin Zhao, Ping Liu. Transcriptome-based analysis of lignin accumulation in the regulation of fruit stone development and endocarp hardening in Chinese jujube[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2217-2228.
[4] Shan Wang, Kailin Shi, Yufan Xiao, Wei Ma, Yiguo Hong, Daling Feng, Jianjun Zhao. The circadian clock shapes diurnal gene expression patterns linked to glucose metabolic processes in Chinese cabbage[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2155-2170.
[5] Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang. Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1671-1687.
[6] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[7] Jin Wang, Minghua Wei, Haiyan Wang, Changjuan Mo, Yingchun Zhu, Qiusheng Kong. A time-course transcriptome reveals the response of watermelon to low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1786-1799.
[8] Xiaochun Wei, Yuanlin Zhang, Yanyan Zhao, Weiwei Chen, Ujjal Kumar Nath, Shuangjuan Yang, Henan Su, Zhiyong Wang, Wenjing Zhang, Baoming Tian, Fang Wei, Yuxiang Yuan, Xiaowei Zhang. Mitotic pollen abnormalities are linked to Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1092-1107.
[9] Yonghui Fan, Yue Zhang, Yu Tang, Biao Xie, Wei He, Guoji Cui, Jinhao Yang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Haipeng Zhang, Zhenglai Huang.
Response of wheat to winter night warming based on physiological and transcriptome analyses
[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1044-1064.
[10] Yiying Li, Yuanyuan Hu, Bei Wang, Mengyao Lang, Shutang Zhou, Zhongxia Wu. Transcriptome-based analysis reveals chromatin remodeling in post-adult eclosion reconstruction of the insect fat body[J]. >Journal of Integrative Agriculture, 2025, 24(2): 668-679.
[11] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[12] Dongming Liu, Jinfang Liang, Quanquan Liu, Yaxin Chen, Shixiang Duan, Dongling Sun, Huayu Zhu, Junling Dou, Huanhuan Niu, Sen Yang, Shouru Sun, Jianbin Hu, Luming Yang. The pseudo-type response regulator gene Clsc regulates rind stripe coloration in watermelon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 147-160.
[13] Lijiao Ge, Weihao Miao, Kuolin Duan, Tong Sun, Xinyan Fang, Zhiyong Guan, Jiafu Jiang, Sumei Chen, Weimin Fang, Fadi Chen, Shuang Zhao. Comparative transcriptome analysis identifies key regulators of nitrogen use efficiency in chrysanthemum[J]. >Journal of Integrative Agriculture, 2025, 24(1): 176-195.
[14] Yuting Zhu, Yongli Wang, Yidong Wang, Guiping Zhao, Jie Wen, Huanxian Cui. Transcriptome analysis reveals steroid hormones biosynthesis pathway involved in abdominal fat deposition in broilers[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3118-3128.
[15] Meixue Sun, Tong Li, Yingjie Liu, Kenneth Wilson, Xingyu Chen, Robert I. Graham, Xianming Yang, Guangwei Ren, Pengjun Xu. A dicistrovirus increases pupal mortality in Spodoptera frugiperda by suppressing protease activity and inhibiting larval diet consumption[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2723-2734.
No Suggested Reading articles found!