Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 3118-3128    DOI: 10.1016/j.jia.2023.04.015
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptome analysis reveals steroid hormones biosynthesis pathway involved in abdominal fat deposition in broilers
Yuting Zhu, Yongli Wang, Yidong Wang, Guiping Zhao, Jie Wen, Huanxian Cui#

State Key Laboratory of Animal Nutrition/Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs/Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

肉鸡的腹部脂肪过度沉积会造成很多不良后果,例如降低肉鸡的饲料效率、影响肉鸡健康、增加生产成本等。因此,培育低腹脂系的肉鸡品种具有重要意义。鸡的腹脂沉积是一个由遗传因素主导的多因素共同调控的复杂生理过程,其分子基础难以捉摸。在本研究中,我们通过转录组分析比较了腹部脂肪沉积不同阶段的差异基因,以鉴定影响腹部脂肪沉积的关键基因和途径。我们发现腹脂重(AFW)从第35D35)到第91天(D91)逐渐增加,然后在第119天下降。我们比较D35 vs D63D35 vs D91的基因表达水平,鉴定差异表达基因(DEGs),并通过加权基因共表达网络分析(WGCNA)识别与脂肪沉积相关的基因模块。然后,对鉴定到的DEGsWGCNA基因模块进行交叉分析,在D35 vs D63D35 vs D91分别鉴定出394个和435个交叉基因。对这些交叉基因进行功能富集分析,基因本体论(GO)和京都基因与基因组百科(KEGG)通路富集分析结果表明,类固醇激素生物合成途径和胰岛素信号通路在所有交叉基因中被共同富集,已有研究表明类固醇激素生物合成途径调控胰岛素信号通路,表明类固醇激素生物合成途径在肉鸡腹部脂肪发育过程发挥重要作用。接着采用CytoHubba15种算法对这些交叉基因进行筛选,最终鉴定到6个与腹部脂肪沉积相关的hub基因(ACTB, SOX9, RHOBTB2, PDLIM3, NEDD9DOCK4SOX9已被证明与类固醇激素受体结合所需的蛋白质结合,而RHOBTB2通过cyclin因子间接调控类固醇激素的生物合成,并最终影响脂肪沉积。同时,PPI蛋白互作预测分析发现这6hub基因的蛋白水平存在互作关系综上所述,我们分析表明RHOBTB2SOX9基因可以通过调节类固醇激素生物合成途径在肉仔鸡脂肪沉积中发挥重要作用。本研究的结果为进一步研究鸡脂肪沉积机制提供了新的方向和思路



Abstract  
Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.  Therefore, it is an important task for poultry breeders to breed broilers with low abdominal fat.  Abdominal fat deposition is a highly complex biological process, and its molecular basis remains elusive.  In this study, we performed transcriptome analysis to compare gene expression profiles at different stages of abdominal fat deposition to identify the key genes and pathways involved in abdominal fat accumulation.  We found that abdominal fat weight (AFW) increased gradually from day 35 (D35) to 91 (D91), and then decreased at day 119 (D119).  Accordingly, after detecting differentially expressed genes (DEGs) by comparing gene expression profiles at D35 vs. D63 and D35 vs. D91, and identifying gene modules associated with fat deposition by weighted gene co-expression network analysis (WGCNA), we performed intersection analysis of the detected DEGs and WGCNA gene modules and identified 394 and 435 intersecting genes, respectively.  The results of the Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the steroid hormone biosynthesis and insulin signaling pathways were co-enriched in all intersecting genes, steroid hormones have been shown that regulated insulin signaling pathway, indicating the importance of the steroid hormone biosynthesis pathway in the development of broiler abdominal fat.  We then identified 6 hub genes (ACTB, SOX9, RHOBTB2, PDLIM3, NEDD9, and DOCK4) related to abdominal fat deposition.  Further analysis also revealed that there were direct interactions between 6 hub genes.  SOX9 has been shown to bind to proteins required for steroid hormone receptor binding, and RHOBTB2 indirectly regulates the steroid hormones biosynthesis through cyclin factor, and ultimately affect fat deposition.  Our results suggest that the genes RHOBTB2 and SOX9 play an important role in fat deposition in broilers, by regulating steroid hormone synthesis.  These findings provide new targets and directions for further studies on the mechanisms of fat deposition in chicken.  


Keywords:  broilers       abdominal fat deposition       transcriptome analysis       Hub genes       steroid hormones biosynthesis pathway  
Received: 26 January 2023   Accepted: 22 February 2023
Fund: 

This research was funded by the grants from the Beijing Natural Science Foundation, China (6202028), the National Natural Science Foundation of China (32172723), the State Key Laboratory of Animal Nutrition, China (2004DA125184G2109), the Agricultural Science and Technology Innovation Program, China (ASTIP-IAS04),  and the China Agriculture Research System of MOF and MARA (CARS-41).

About author:  Yuting Zhu, E-mail: ytzhu0627@163.com; #Correspondence Huanxian Cui, E-mail: cuihuanxian@caas.cn

Cite this article: 

Yuting Zhu, Yongli Wang, Yidong Wang, Guiping Zhao, Jie Wen, Huanxian Cui. 2024. Transcriptome analysis reveals steroid hormones biosynthesis pathway involved in abdominal fat deposition in broilers. Journal of Integrative Agriculture, 23(9): 3118-3128.

Chazenbalk G, Singh P, Irge D, Shah A, Abbott D H, Dumesic D A. 2013. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids78, 920–926.

Chen Y, Zhao Y, Jin W, Li Y, Zhang Y, Ma X, Sun G, Han R, Tian Y, Li H, Kang X, Li G. 2019. MicroRNAs and their regulatory networks in Chinese Gushi chicken abdominal adipose tissue during postnatal late development. BMC Genomics20, 778.

Chin C H, Chen S H, Wu H H, Ho C W, Ko M T, Lin C Y. 2014. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology(Suppl 4), S11.

Choi Y M, Kim K B, Lee J H, Chun Y K, An I S, An S, Bae S. 2017. DBC2/RhoBTB2 functions as a tumor suppressor protein via Musashi-2 ubiquitination in breast cancer. Oncogene36, 2802–2812.

Cicatiello L, Addeo R, Sasso A, Altucci L, Petrizzi V B, Borgo R, Cancemi M, Caporali S, Caristi S, Scafoglio C, Teti D, Bresciani F, Perillo B, Weisz A. 2004. Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Molecular and Cellular Biology24, 7260–7274.

Collado D, Yoshihara T, Hamaguchi M. 2007. DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation. Biochemical and Biophysical Research Communications360, 600–603.

Cui X, Cui H, Liu L, Zhao G, Liu R, Li Q, Zheng M, Wen J. 2018. Decreased testosterone levels after caponization leads to abdominal fat deposition in chickens. BMC Genomics19, 344.

Duan J, Shao F, Shao Y, Li J, Ling Y, Teng K, Li H, Wu C. 2013. Androgen inhibits abdominal fat accumulation and negatively regulates the PCK1 gene in male chickens. PLoS One8, e59636.

Elbers J M, Asscheman H, Seidell J C, Gooren L J. 1999. Effects of sex steroid hormones on regional fat depots as assessed by magnetic resonance imaging in transsexuals. The American Journal of Physiology276, E317–E325.

Frigolet M E, Gutiérrez-Aguilar R. 2020. The colors of adipose tissue. Gaceta Medica de Mexico156, 142–149.

Haiman C A, Garcia R R, Hsu C, Xia L, Ha H, Sheng X, Le Marchand L, Kolonel L N, Henderson B E, Stallcup M R, Greene G L, Press M F. 2009. Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: The multiethnic cohort. BMC Cancer9, 43.

Hamaguchi M, Meth J L, von Klitzing C, Wei W, Esposito D, Rodgers L, Walsh T, Welcsh P, King M C, Wigler M H. 2002. DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proceedings of the National Academy of Sciences of the United States of America99, 13647–13652.

Jin W, Zhao Y, Zhai B, Li Y, Fan S, Yuan P, Sun G, Jiang R, Wang Y, Liu X, Tian Y, Kang X, Li G. 2021. Characteristics and expression profiles of circRNAs during abdominal adipose tissue development in Chinese Gushi chickens. PLoS One16, e0249288.

Jones M E, Thorburn A W, Britt K L, Hewitt K N, Misso M L, Wreford N G, Proietto J, Oz O K, Leury B J, Robertson K M, Yao S, Simpson E R. 2001. Aromatase-deficient (ArKO) mice accumulate excess adipose tissue. The Journal of Steroid Biochemistry and Molecular Biology79, 3–9.

Kelly D M, Jones T H. 2015. Testosterone and obesity. Obesity Reviews (An Official Journal of the International Association for the Study of Obesity), 16, 581–606.

Khurana N, Sikka S C. 2019. Interplay Between SOX9, Wnt/β-catenin and androgen receptor signaling in castration-resistant prostate cancer. International Journal of Molecular Sciences20, 2066.

Li Y L, Yao Y X, Zhao Y M, Di Y Q, Zhao X F. 2021. The steroid hormone 20-hydroxyecdysone counteracts insulin signaling via insulin receptor dephosphorylation. The Journal of Biological Chemistry296, 100318.

Liu L, Liu X, Cui H, Liu R, Zhao G, Wen J. 2019. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics20, 863.

Liu X, Li H, Wang S, Hu X, Gao Y, Wang Q, Li N, Wang Y, Zhang H. 2007. Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one. Poultry Sciences86, 1084–1089.

Moreira G C M, Boschiero C, Cesar A S M, Reecy J M, Godoy T F, Trevisoli P A, Cantão M E, Ledur M C, Ibelli A M G, Peixoto J O, Moura A, Garrick D, Coutinho L L. 2018. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens. BMC Genomics19, 374.

Panda D K, Miao D, Lefebvre V, Hendy G N, Goltzman D. 2001. The transcription factor SOX9 regulates cell cycle and differentiation genes in chondrocytic CFK2 cells. The Journal of Biological Chemistry276, 41229–41236.

Thun G A, Imboden M, Berger W, Rochat T, Probst-Hensch N M. 2013. The association of a variant in the cell cycle control gene CCND1 and obesity on the development of asthma in the Swiss SAPALDIA study. The Journal of Asthma (Official Journal of the Association for the Care of Asthma), 50, 147–154.

Uhrín V. 1986. The growth of abdominal adipose tissue in various production-type of domestic fowl. Veterinarni Medicina31, 371–382.

Varghese M, Griffin C, Abrishami S, Eter L, Lanzetta N, Hak L, Clemente J, Agarwal D, Lerner A, Westerhoff M, Patel R, Bowers E, Islam M, Subbaiah P, Singer K. 2021. Sex hormones regulate metainflammation in diet-induced obesity in mice. The Journal of Biological Chemistry297, 101229.

Wang C, Wang Y, Ma S R, Zuo Z Y, Wu Y B, Kong W J, Wang A P, Jiang J D. 2019. Berberine inhibits adipocyte differentiation, proliferation and adiposity through down-regulating galectin-3. Scientific Reports9, 13415.

Wang H, McKnight N C, Zhang T, Lu M L, Balk S P, Yuan X. 2007. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Research67, 528–536.

Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics26, 136–138.

Wang L, He S, Yuan J, Mao X, Cao Y, Zong J, Tu Y, Zhang Y. 2012. Oncogenic role of SOX9 expression in human malignant glioma. Medical Oncology29, 3484–3490.

Wang Y F, Dang H F, Luo X, Wang Q Q, Gao C, Tian Y X. 2021. Downregulation of SOX9 suppresses breast cancer cell proliferation and migration by regulating apoptosis and cell cycle arrest. Oncology Letters22, 517.

Xiao C, Sun T, Yang Z, Xu W, Wang J, Zeng L, Deng J, Yang X. 2021. Transcriptome landscapes of differentially expressed genes related to fat deposits in Nandan-Yao chicken. Functional & Integrative Genomics21, 113–124.

Xu Y, Ma X, Shen Y, Wang Y, Zhou J, Bao Y. 2020. Influence of sex hormones on the relationship between body fat and glycated albumin levels. The Journal of Sexual Medicine17, 903–910.

Zhang X Y, Wu M Q, Wang S Z, Zhang H, Du Z Q, Li Y M, Cao Z P, Luan P, Leng L, Li H. 2018. Genetic selection on abdominal fat content alters the reproductive performance of broilers. Animal12, 1232–1241.

[1] WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2981-2992.
[2] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[3] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[4] WANG Lai-di, ZHANG Yang, KONG Ling-ling, WANG Zhi-xiu, BAI Hao, JIANG Yong, BI Yu-lin, CHANG Guo-bin, CHEN Guo-hong. Effects of rearing system (floor vs. cage) and sex on performance, meat quality and enteric microorganism of yellow feather broilers[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1907-1920.
[5] CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3199-3208.
[6] Aejaz Ahmad DAR, Susheel SHARMA, Reetika MAHAJAN, Muntazir MUSHTAQ, Ankila SALATHIA, Shahid AHAMAD, Jag Paul SHARMA. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3013-3024.
[7] YANG Yun-feng, ZHAO Lu-lu, SHAO Yu-xin, LIAO Xiu-dong, ZHANG Li-yang, LU Lin, LUO Xu-gang . Effects of dietary graded levels of cinnamon essential oil and its combination with bamboo leaf flavonoid on immune function, antioxidative ability and intestinal microbiota of broilers[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2123-2132.
[8] LIU Xuan, LIANG Wei, LI Yu-xing, LI Ming-jun, MA Bai-quan, LIU Chang-hai, MA Feng-wang, LI Cui-ying. Transcriptome analysis reveals the effects of alkali stress on root system architecture and endogenous hormones in apple rootstocks[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2264-2271.
[9] ZHAO Yue, MAO Jing-jing, SHE Rui-ping, HU Feng-jiao, Majid H Soomro, LIANG Rui-ping, YANG Yi-fei, DU Fang, WANG Tong-tong, GUO Zhao-jie, CHENG Min-heng. Hepatitis associated with hepatitis B virus in broilers[J]. >Journal of Integrative Agriculture, 2016, 15(1): 191-199.
[10] LI Wen-xiang, MA Xin-yan, LU Lin, ZHANG Li-yang, LUO Xu-gang. Relative bioavailability of tribasic zinc sulfate for broilers fed a conventional corn-soybean meal diet[J]. >Journal of Integrative Agriculture, 2015, 14(10): 2042-2049.
[11] JIANG Shou-qun, JIANG Zong-yong, ZHOU Gui-lian, LIN Ying-cai , ZHENG Chun-tian. Effects of Dietary Isoflavone Supplementation on Meat Quality and Oxidative Stability During Storage in Lingnan Yellow Broilers[J]. >Journal of Integrative Agriculture, 2014, 13(2): 387-393.
No Suggested Reading articles found!