Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1813-1830    DOI: 10.1016/j.jia.2024.11.026
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)

Congrui Sun1, 2*, Runze Wang1, 3*, Jiaming Li1, 2, Xiaolong Li4, Bobo Song1, 2, David Edwards5#, Jun Wu1, 2#

1 College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China

2 Zhongshan Biological Breeding Laboratory, Nanjing 210014, China

3 School of Horticulture, Anhui Agricultural University, Hefei 230036, China

4 Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetables of Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China

5 Centre for Applied Bioinformatics and Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia

 Highlights 
The first sand pear pan-transcriptome was constructed using 506 Pyrus pyrifolia samples from different tissues, comprising 156,744 transcripts, among which the novel transcripts showed significant enrichment in the defense response.
The intrinsic relationships among phenotypes and the selection for disease resistance during improvement based on expression presence/absence variations (ePAVs) were revealed.
Co-expression network analysis revealed that stone cell formation, anthocyanin synthesis, and disease resistance in pear are co-regulated by multiple modules and genes. 
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

砂梨作为梨属植物的重要栽培种,是温带地区的重要果树,其具有丰富的遗传资源,对梨果实品质的改良具有重要意义。目前,包括梨在内的果树物种抗性与果实品质性状之间关系的研究较为有限。而泛转录组能够有效捕捉来自编码区的遗传信息,并反映个体之间基因表达的差异。因此,本研究基于来自不同组织的506个砂梨样本构建了泛转录组,并通过表达存在/缺失变异(ePAVs解析了改良过程中表型与抗病性之间的内在关系。研究结果表明,砂梨泛转录组包含156,744个转录本,其中新转录本在防御反应生物学过程中显著富集。有趣的是,梨的地方品种中抗病相关基因的表达水平较高,但在改良过程中受到负选择ePAVs分析表明,具有遗传多样性的砂梨地方品种可以分为两个亚群,并推测它们经历了不同的传播过程。进一步通过共表达网络和相关性分析,发现梨的石细胞形成、果实花青素合成和抗逆性之间相关联,它们由多个模块共同调控,且调控基因的表达具有显著相关性。此外,还鉴定到梨参考基因组中缺失的一些基因,如候选基因HKL1,其可能影响了果实糖含量。研究结果为梨果实复杂性状间的关联分析提供了新见解,并为梨的抗病性和果实品质协同改良提供了数据资源。



Abstract  

Pyrus pyrifolia, commonly known as sand pear, is a key economic fruit tree in temperate regions that possesses highly diverse germplasm resources for pear quality improvement.  However, research on the relationship between resistance and fruit quality traits in the breeding of fruit species like pear is limited.  Pan-transcriptomes effectively capture genetic information from coding regions and reflect variations in gene expression between individuals.  Here, we constructed a pan-transcriptome based on 506 samples from different tissues of sand pear, and explored the intrinsic relationships among phenotypes and the selection for disease resistance during improvement based on expression presence/absence variations (ePAVs).  The pan-transcriptome in this study contains 156,744 transcripts, among which the novel transcripts showed significant enrichment in the defense response.  Interestingly, disease resistance genes are highly expressed in landraces of pear but have been selected against during the improvement of this perennial tree species.  We found that the genetically diverse landraces can be divided into two subgroups and inferred that they have undergone different dispersal processes.  Through co-expression network analysis, we confirmed that the formation of stone cells in pears, the synthesis of fruit anthocyanins, and the ability to resist stress are interrelated.  They are jointly regulated by several modules, and the expression of regulatory genes has significant correlations with these three processes.  Moreover, we identified candidate genes such as HKL1 that may affect sugar content and are missing from the reference genome.  This study provides insights into the associations between complex fruit traits, while providing a database resource for pear disease resistance and fruit quality breeding.

Keywords:  pear       pan-transcriptome        ePAVs        disease resistance        fruit quality       co-expression network  
Received: 14 January 2024   Online: 12 November 2024   Accepted: 11 June 2024
Fund: 

This work was supported by the National Science Foundation of China (32230097), the National Key Research and Development Program of China (2022YFD1200503), the earmarked fund for China Agriculture Research System (CARS-28), the earmarked fund for Jiangsu Agricultural Industry Technology System (JATS [2023] 412), and the Natural Science Foundation of Jiangsu Province for Young Scholar, China (BK20221010). 

About author:  #Correspondence Jun Wu, E-mail: wujun@njau.edu.cn; David Edwards, E-mail: dave.edwards@uwa.edu.au * These authors contributed equally to this study.

Cite this article: 

Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. 2025. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia). Journal of Integrative Agriculture, 24(5): 1813-1830.

Alexa A, Rahnenfuhrer J, Lengauer T. 2006. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics22, 1600–1607.

Arunraj R, Skori L, Kumar A, Hickerson N M N, Shoma N, Vairamani M, Samuel M A. 2020. Spatial regulation of alpha-galactosidase activity and its influence on raffinose family oligosaccharides during seed maturation and germination in Cicer arietinumPlant Signaling & Behavior15, 1709707.

Blum M, Chang H Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, Richardson L, Salazar G A, Williams L, Bork P, Bridge A, Gough J, Haft D H, Letunic I, Marchler-Bauer A, Mi H Y, et al. 2021. The InterPro protein families and domains database: 20 years on. Nucleic Acids Research49, D344–D354.

Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120.

Bood K G, Zabetakis I. 2002. The biosynthesis of strawberry flavor (II): Biosynthetic and molecular biology studies. Journal of Food Science67, 2–8.

Buchfink B, Xie C, Huson D H. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods12, 59–60.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden T L. 2009. BLAST+: Architecture and applications. BMC Bioinformatics10, 9.

Cantalapiedra C P, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular Biology and Evolution38, 5825–5829.

Cao Y, Han Y, Meng D, Li D, Jin Q, Lin Y, Cai Y. 2016. Structural, evolutionary, and functional analysis of the class III peroxidase gene family in Chinese pear (Pyrus bretschneideri). Frontiers in Plant Science7, 1874.

Chen X N, Zhang M Y, Sun M Y, Liu Y Y, Li S N, Song B B, Li M Y, Zhang S L, Wang R Z, Li J M, Zhao K J, Wu J. 2022. Genome-wide genetic diversity and IBD analysis reveals historic dissemination routes of pear in China. Tree Genet Genomes18,1–12.

Cramer C S, Wehner T C. 2000. Path analysis of the correlation between fruit number and plant traits of cucumber populations. Hortscience35, 708–711.

Deng Y W, Ning Y S, Yang D L, Zhai K R, Wang G L, He Z H. 2020. Molecular basis of disease resistance and perspectives on breeding strategies for resistance improvement in crops. Molecular Plant13, 1402–1419.

Friedrich L, Moyer M, Ward E, Ryals J. 1991. Pathogenesis-related protein 4 is structurally homologous to the carboxy-terminal domains of hevein, win-1 and win-2. Molecular and General Genetics MGG230, 113–119.

Gao L, Gonda I, Sun H H, Ma Q Y, Bao K, Tieman D M, Burzynski-Chang E A, Fish T L, Stromberg K A, Sacks G L, Thannhauser T W, Foolad M R, Diez M J, Blanca J, Canizares J, Xu Y M, van der Knaap E, Huang S W, Klee H J, Giovannoni J J, et al. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics51, 1044–1051.

Gao Y H, Yang Q S, Yan X H, Wu X Y, Yang F, Li J Z, Wei J, Ni J B, Ahmad M, Bai S L, Teng Y W. 2021. High-quality genome assembly of ‘Cuiguan’ pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. Horticulture Research8, 197.

Ginestet C. 2011. ggplot2: Elegant graphics for data analysis. Journal of the Royal Statistical Society Series A: Statistics in Society174, 245–246.

Golicz A A, Batley J, Edwards D. 2016. Towards plant pangenomics. Plant Biotechnology Journal14, 1099–1105.

Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology29, 644–652.

Hirsch C N, Foerster J M, Johnson J M, Sekhon R S, Muttoni G, Vaillancourt B, Penagaricano F, Lindquist E, Pedraza M A, Barry K, de Leon N, Kaeppler S M, Buell C R. 2014. Insights into the maize pan-genome and pan-transcriptome. Plant Cell26, 121–135.

Islam F M A, Rengifo J, Redden R J, Basford K E, Beebe S E. 2003. Association between seed coat polyphenolics (tannins) and disease resistance in common bean. Plant Foods for Human Nutrition58, 285–297.

Jiang Z, Tang F, Huang H, Hu H, Chen Q. 2009. Assessment of genetic diversity of Chinese sand pear landraces (Pyrus pyrifolia Nakai) using simple sequence repeat markers. HortScience44, 619–626.

Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G. 2017. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research45, D1040-D1045.

Jin M L, Liu H J, He C, Fu J J, Xiao Y J, Wang Y B, Xie W B, Wang G Y, Yan J B. 2016. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Scientific Reports6, 1–12.

Jones P, Binns D, Chang H Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn A F, Sangrador-Vegas A, Scheremetjew M, Yong S Y, Lopez R, Hunter S. 2014. InterProScan 5: Genome-scale protein function classification. Bioinformatics30, 1236–1240.

Jungo F, Bougueleret L, Xenarios I, Poux S. 2012. The UniProtKB/Swiss-Prot Tox-Prot program: A central hub of integrated venom protein data. Toxicon60, 551–557.

Khan A, Korban S S. 2022. Breeding and genetics of disease resistance in temperate fruit trees: Challenges and new opportunities. Theoretical and Applied Genetics135, 3961–3985.

Kong W L, Jiang M W, Wang Y B, Chen S, Zhang S C, Lei W L, Chai K, Wang P J, Liu R Y, Zhang X T. 2022. Pan-transcriptome assembly combined with multiple association analysis provides new insights into the regulatory network of specialized metabolites in the tea plant Camellia sinensisHorticulture Research9, uhac100.

Kuznetsova I, Lugmayr A, Siira S J, Rackham O, Filipovska A. 2019. CirGO: An alternative circular way of visualising gene ontology terms. BMC Bioinformatics20, 1–7.

Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. Bmc Bioinformatics9, 559.

Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods9, 357–359.

Lee J H, Venkatesh J, Jo J, Jang S, Kim G W, Kim J M, Han K, Ro N, Lee H Y, Kwon J K, Kim Y M, Lee T H, Choi D, Van Deynze A, Hill T, Kfir N, Freiman A, Olivas N H D, Elkind Y, Paran I, et al. 2022. High-quality chromosome-scale genomes facilitate effective identification of large structural variations in hot and sweet peppers. Horticulture Research9, uhac210.

Leek J T, Johnson W E, Parker H S, Jaffe A E, Storey J D. 2012. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics28, 882–883.

Li J M, Zhang M Y, Li X L, Khan A, Kumar S, Allan A C, Kui L W, Espley R V, Wang C H, Wang R Z, Xue C, Yao G F, Qin M F, Sun M Y, Tegtmeier R, Liu H N, Wei W L, Ming M L, Zhang S L, Zhao K J, Song B B, Ni J P, An J P, Korban S S, Wu J. 2022. Pear genetics: Recent advances, new prospects, and a roadmap for the future. Horticulture Research9, uhab040.

Li J M, Zheng D M, Li L T, Qiao X, Wei S W, Bai B, Zhang S L, Wu J. 2015. Genome-wide function, evolutionary characterization and expression analysis of sugar transporter family genes in pear (Pyrus bretschneideri Rehd). Plant and Cell Physiology56, 1721–1737.

Li M, Dunwell J M, Zhang H W, Wei S W, Li Y J, Wu J Y, Zhang S L. 2018. Network analysis reveals the co-expression of sugar and aroma genes in the Chinese white pear (Pyrus bretschneideri). Gene677, 370–377.

Li W, Godzik A. 2006. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics22, 1658–1659.

Li X L, Liu L, Ming M L, Hu H J, Zhang M Y, Fan J, Song B B, Zhang S L, Wu J. 2019. Comparative transcriptomic analysis provides insight into the domestication and improvement of pear (P. pyrifolia) fruit. Plant Physiology180, 435–452.

Li X L, Xue C, Li J M, Qiao X, Li L T, Yu L A, Huang Y H, Wu J. 2016. Genome-wide identification, evolution and functional divergence of myb transcription factors in Chinese white pear (Pyrus bretschneideri). Plant and Cell Physiology57, 824–847.

Little D, Gouhier-Darimont C, Bruessow F, Reymond P. 2007. Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiology143, 784–800.

Liu D, Yang L, Zhang J Z, Zhu G T, Lu H J, Lu Y Q, Wang Y L, Cao X, Sun T S, Huang S W, Wu Y Y. 2020. Domestication and breeding changed tomato fruit transcriptome. Journal of Integrative Agriculture19, 120–132.

Liu H M, Liu Z J, Wu Y, Zheng L M, Zhang G F. 2021. Regulatory mechanisms of anthocyanin biosynthesis in apple and pear. International Journal of Molecular Sciences22, 8441.

Liu S R, An Y L, Tong W, Qin X J, Samarina L, Guo R, Xia X B, Wei C L. 2019. Characterization of genome-wide genetic variations between two varieties of tea plant (Camellia sinensis) and development of InDel markers for genetic research. BMC Genomics20, 1–16.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Ma Y L, Liu M, Stiller J, Liu C J. 2019. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. BMC Genomics20, 1–11.

Moing A, Poessel J L, Svanella-Dumas L, Loonis M, Kervella J. 2003. Biochemical basis of low fruit quality of Prunus davidiana, a pest and disease resistance donor for peach breeding. Journal of the American Society for Horticultural Science128, 55–62.

Nguyen L T, Schmidt H A, von Haeseler A, Minh B Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution32, 268–274.

Nicolai M, Roncato M A, Canoy A S, Rouquie D, Sarda X, Freyssinet G, Robaglia C. 2006. Large-scale analysis of mRNA translation states during sucrose starvation in Arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control. Plant Physiology141, 663–673.

O’Leary N A, Wright M W, Brister J R, Ciufo S, McVeigh D H R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y M, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell C M, Goldfarb T, et al. 2016. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Research44, D733–D745.

Oshlack A, Wakefield M J. 2009. Transcript length bias in RNA-seq data confounds systems biology. Biology Direct4, 14.

Ou C Q, Zhang X L, Wang F, Zhang L Y, Zhang Y J, Fang M, Wang J H, Wang J X, Jiang S L, Zhang Z H. 2020. A 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene is associated with the red skin of “Zaosu Red” pear (Pyrus pyrifolia White Pear Group): A deletion in the PpBBX24 gene is associated with the red skin of pear. Horticulture Research7, 39.

Ou LJ, Li D, Lv J H, Chen W C, Zhang Z Q, Li X F, Yang B Z, Zhou S D, Yang S, Li W G, Gao H Z, Zeng Q, Yu H Y, Ouyang B, Li F, Liu F, Zheng J Y, Liu Y H, Wang J, Wang B B, et al. 2018. Pan-genome of cultivated pepper (Capsicum) and its use in gene presence-absence variation analyses. New Phytologist220, 360–363.

Pillich R T, Chen J, Rynkov V, Welker D, Pratt D. 2017. NDEx: A community resource for sharing and publishing of biological networks. Protein Bioinformatics: From Protein Modifications and Networks to Proteomics1558, 271–301.

Prunier J, Giguere I, Ryan N, Guy R, Soolanayakanahally R, Isabel N, MacKay J, Porth I. 2019. Gene copy number variations involved in balsam poplar (Populus balsamifera L.) adaptive variations. Molecular Ecology28, 1476–1490.

do Rego E R, do Rego M M, Cruz C D, Finger F L, Casali V W D. 2011. Phenotypic diversity, correlation and importance of variables for fruit quality and yield traits in Brazilian peppers (Capsicum baccatum). Genetic Resources Crop Evolution58, 909–918.

Ruan J, Dean A K, Zhang W. 2010. A general co-expression network-based approach to gene expression analysis: Comparison and applications. BMC Systems Biology4, 8.

Saito T. 2016. Advances in Japanese pear breeding in Japan. Breeding Science66, 46–59.

Schwab W, Davidovich-Rikanati R, Lewinsohn E. 2008. Biosynthesis of plant-derived flavor compounds. The Plant Journal54, 712–732.

Shan Y F, Li M Y, Wang R Z, Li X G, Jing L, Li J M, Zhao K J, Jun W. 2023. Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears. Journal of Integrative Agriculture22, 120–138.

Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research13, 2498–2504.

Shirasawa K, Itai A, Isobe S. 2021. Chromosome-scale genome assembly of Japanese pear (Pyrus pyrifolia) variety ‘Nijisseiki’. DNA Research28, dsab001.

Song Y, Fan L, Chen H, Zhang M Y, Ma Q Q, Zhang S L, Wu J. 2014. Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia cultivars by a genome-wide set of SSR markers. Scientia Horticulture167, 5–16.

Stoeckli S, Mody K, Dorn S, Kellerhals M. 2011. Association between herbivore resistance and fruit quality in apple. Hortscience46, 12–15.

Su J S, Zhang F, Chong X R, Song A P, Guan Z Y, Fang W M, Chen F D. 2019. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. Horticulture Research6, 21.

Sun C, Fu D, Lu H P, Zhang J H, Zheng X D, Yu T. 2018. Autoclaved yeast enhances the resistance against Penicillium expansum in postharvest pear fruit and its possible mechanisms of action. Biological Control119, 51–58.

Sun X P, Jiao C, Schwaninger H, Chao C T, Ma Y M, Duan N B, Khan A, Ban S, Xu K N, Cheng L L, Zhong G Y, Fei Z J. 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics52, 1423–1432.

Sun Y Q, Shang L G, Zhu Q H, Fan L J, Guo L B. 2022. Twenty years of plant genome sequencing: Achievements and challenges. Trends in Plant Science27, 391–401.

Supek F, Bosnjak M, Skunca N, Smuc T. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE6, e21800.

Tettelin H, Masignani V, Cieslewicz M J, Donati C, Medini D, Ward N L, Angiuoli S V, Crabtree J, Jones A L, Durkin A S, DeBoy R T, Davidsen T M, Mora M, Scarselli M, Ros I M Y, Peterson J D, Hauser C R, Sundaram J P, Nelson W C, Madupu R, et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proceedings of the National Academy of Sciences of the United States of America102, 13950–13955.

Tettelin H, Riley D, Cattuto C, Medini D. 2008. Comparative genomics: The bacterial pan-genome. Current Opinion in Microbiology11, 472–477.

Wang R Z, Xue Y S, Fan J, Yao J L, Qin M F, Lin T, Lian Q, Zhang M Y, Li X L, Li J M, Sun M Y, Song B B, Zhang J Y, Zhao K J, Chen X, Hu H J, Fei Z J, Xue C, Wu J. 2021. A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit. Genome Biology22, 1–23.

Wang X Q, Wang H H, Shi C H, Zhang X Y, Duan K, Luo J. 2015. Morphological, cytological and fertility consequences of a spontaneous tetraploid of the diploid pear (Pyrus pyrifolia Nakai) cultivar ‘Cuiguan’. Scientia Horticulturae189, 59–65.

Wei H B, Bausewein A, Greiner S, Dauchot N, Harms K, Rausch T. 2017. CiMYB17, a stress-induced chicory R2R3-MYB transcription factor, activates promoters of genes involved in fructan synthesis and degradation. New Phytologist215, 281–298.

Wu J, Wang Y, Xu J, Korban S S, Fei Z, Tao S, Ming R, Tai S, Khan A M, Postman J D, Gu C, Yin H, Zheng D, Qi K, Li Y, Wang R, Deng C H, Kumar S, Chagné D, et al. 2018. Diversification and independent domestication of Asian and European pears. Genome Biology19, 1–16.

Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan M A, Tao S, Korban S S, Wang H, Chen N J, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, et al. 2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research23, 396–408.

Wu Q, Tong W, Zhao H J, Ge R H, Li R P, Huang J, Li F D, Wang Y L, Mallano A I, Deng W W, Wang W J, Wan X C, Zhang Z Z, Xia E H. 2022. Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116 Camellia plants. The Plant Journal111, 406–421.

Wu T D, Watanabe C K. 2005. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics21, 1859–1875.

Xue C, Yao J L, Qin M F, Zhang M Y, Allan A C, Wang D F, Wu J. 2019a. PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnology Journal17, 103–117.

Xue C, Yao J L, Xue Y S, Su G Q, Wang L, Lin L K, Allan A C, Zhang S L, Wu J. 2019b. PbrMYB169 positively regulates lignification of stone cells in pear fruit. Journal of Experimental Botany70, 1801–1814.

Yan Y, Zheng X F, Apaliya M T, Yang H J, Zhang H. 2018. Transcriptome characterization and expression profile of defense-related genes in pear induced by Meyerozyma guilliermondiiPostharvest Biology and Technology141, 63–70.

Yu G C, Wang L G, Han Y Y, He Q Y. 2012. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology16, 284–287.

Zhang M Y, Xue C, Hu H J, Li J M, Xue Y S, Wang R Z, Fan J, Zou C, Tao S T, Qin M F, Bai B, Li X L, Gu C, Wu S, Chen X, Yang G Y, Liu Y Y, Sun M Y, Fei Z J, Zhang S L, et al. 2021. Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nature Communications12, 1144.

Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, Luo J, Kawar P G, Hill L, Santino A, Fernie A R, Martin C. 2015. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nature Communications6, 8635.

Zhao B Y, Qi K J, Yi X R, Chen G D, Liu X, Qi X X, Zhang S L. 2019. Identification of hexokinase family members in pear (Pyrus×bretschneideri) and functional exploration of PbHXK1 in modulating sugar content and plant growth. Gene711, 143932.

Zhao Q, Feng Q, Lu H Y, Li Y, Wang A, Tian Q L, Zhan Q L, Lu Y Q, Huang T, Wang Y C, Fan D L, Zhao Y, Wang Z Q, Zhou C C, Chen J Y, Zhu C R, Li W J, Weng Q J, Xu Q, Wang Z X, et al. 2018. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics50, 278–284.

[1] Guoling Guo, Haiyan Zhang, Weiyu Dong, Bo Xu, Youyu Wang, Qingchen Zhao, Lun Liu, Xiaomei Tang, Li Liu, Zhenfeng Ye, Wei Heng, Liwu Zhu, Bing Jia. Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA3-inhibited reactive oxygen species detoxification and abscisic acid signaling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2989-3011.
[2] Tong Shen, Mengdi Ye, Yeping Xu, Bohan Ding, Hongtao Li, Li Zhang, Jun Wang, Yanli Tian, Baishi Hu, Youfu Zhao. Cytospora pyri promotes Erwinia amylovora virulence by providing metabolites and hyphae[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3045-3054.
[3] Wanting Yu, Xinnan Zhang, Weiwei Yan, Xiaonan Sun, Yang Wang, Xiaohui Jia. Effects of 1-methylcyclopropene on skin greasiness and quality of ‘Yuluxiang’ pear during storage at 20°C[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2476-2490.
[4] Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2632-2647.
[5] JIAO Hui-jun, WANG Hong-wei, RAN Kun, DONG Xiao-chang, DONG Ran, WEI Shu-wei, WANG Shao-min. Identification and functional analysis of arabinogalactan protein expressed in pear pollen tubes[J]. >Journal of Integrative Agriculture, 2023, 22(3): 776-789.
[6] WEI Wei-lin, JIANG Fu-dong, LIU Hai-nan, SUN Man-yi, LI Qing-yu, CHANG Wen-jing, LI Yuan-jun, LI Jia-ming, WU Jun. The PcHY5 methylation is associated with anthocyanin biosynthesis and transport in ‘Max Red Bartlett’ and ‘Bartlett’ pears[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3256-3268.
[7] SHAN Yan-fei, LI Meng-yan, WANG Run-ze, LI Xiao-gang, LIN Jing, LI Jia-ming, ZHAO Ke-jiao, WU Jun. Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears[J]. >Journal of Integrative Agriculture, 2023, 22(1): 120-138.
[8] GUAN Zhi-bin, ZHANG Yan-qi, CHAI Xiu-juan, CHAI Xin, ZHANG Ning, ZHANG Jian-hua, SUN Tan. Visual learning graph convolution for multi-grained orange quality grading[J]. >Journal of Integrative Agriculture, 2023, 22(1): 279-291.
[9] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[10] TANG Zi-kai, SUN Man-yi, LI Jia-ming, SONG Bo-bo, LIU Yue-yuan, TIAN Yi-ke, WANG Cai-hong, WU Jun. Comparative transcriptome analysis provides insights into the mechanism of pear dwarfing[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1952-1967.
[11] SONG Jun-xing, CHEN Ying-can, LU Zhao-hui, ZHAO Guang-ping, WANG Xiao-li, ZHAI Rui, WANG Zhi-gang, YANG Cheng-quan, XU Ling-fei. PbPH5, an H+ P-ATPase on the tonoplast, is related to malic acid accumulation in pear fruit[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1645-1657.
[12] LIU Jian-long, ZHANG Chen-xiao, LI Tong-tong, LIANG Cheng-lin, YANG Ying-jie, LI Ding-Li, CUI Zhen-hua, WANG Ran, SONG Jian-kun. Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1346-1356.
[13] LIU Cong, LI De-xiong, HUANG Xian-biao, Zhang Fu-qiong, Xie Zong-zhou, Zhang Hong-yan, Liu Ji-hong. Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity[J]. >Journal of Integrative Agriculture, 2022, 21(3): 725-735.
[14] GUO Bing-bing, LI Jia-ming, LIU Xing, QIAO Xin, Musana Rwalinda FABRICE, WANG Peng, ZHANG Shao-ling, WU Ju-you. Identification and expression analysis of the PbrMLO gene family in pear, and functional verification of PbrMLO23[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2410-2423.
[15] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
No Suggested Reading articles found!