Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 668-679    DOI: 10.1016/j.jia.2024.06.018
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptome-based analysis reveals chromatin remodeling in post-adult eclosion reconstruction of the insect fat body
Yiying Li, Yuanyuan Hu, Bei Wang, Mengyao Lang, Shutang Zhou#, Zhongxia Wu#

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China

 Highlights 
Chromatin remodeling is positively correlated with adult fat body reconstruction.
Brahma is expressed in response to gonadotropic juvenile hormone.
Knockdown of brahma causes significantly reduced vitellogenin expression in the fat body, along with blocked egg production.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

昆虫的脂肪体类似于脊椎动物中的肝脏和脂肪组织,在能量代谢、营养储存及生殖过程中发挥着核心作用。在昆虫变态过程中,脂肪体通过程序性细胞死亡和细胞解离而分解。成虫羽化后,脂肪体通过剩余幼虫脂肪细胞的增殖或成体干细胞的分化而重建。这一重建过程是合成大量卵黄原蛋白(Vg)的前提条件,Vg对于多个卵子的成熟至关重要。尽管其重要性显而易见,但分子机制仍未得到充分解析。通过对羽化后0-5天蝗虫脂肪体的转录组分析,揭示了79个与染色质重塑相关的基因。加权基因共表达网络分析WGCNA表明,染色质重塑与脂肪体重建呈正相关。蛋白质-蛋白质相互作用分析PPI显示,编码SWI/SNF染色质重塑复合体催化亚基的brahma基因对于成虫羽化后脂肪体的发育至关重要。qRT-PCR分析证明,brahma mRNA在卵黄生成前期在脂肪体中的水平逐渐升高,随后达到峰值并在卵黄生成期保持高水平。此外,brahma响应保幼激素JH)而表达。brahma敲低导致脂肪体内Vg表达显著减少,并伴有卵巢生长停滞。研究结果阐明了brahma介导的染色质重塑在JH依赖的脂肪体重建及雌性昆虫生殖中的作用机制



Abstract  
The insect fat body is comparable to the liver and adipose tissue in vertebrates, and plays a pivotal role in energy metabolism, nutrient storage, and reproduction.  During metamorphosis, the fat body is disassembled via programmed cell death and cell dissociation.  After adult eclosion, the fat body is reconstructed either by repopulation from the remaining juvenile fat body cells or by differentiation from adult progenitor cells.  This reconstruction is a prerequisite for initiating the extensive synthesis of vitellogenin (Vg), which is necessary for the maturation of eggs.  Despite its significance, the underlying mechanisms of this reconstruction remain inadequately understood.  Transcriptome analysis of the fat bodies from migratory locusts at 0–5 days post adult emergence revealed 79 genes associated with chromatin remodeling.  Weighted gene co-expression network analysis indicated a positive correlation between chromatin remodeling and fat body reconstitution.  Protein–protein interaction analysis revealed that brahma, which encodes the catalytic subunit of the SWI/SNF chromatin remodeling complex, is crucial for post-adult-eclosion fat body development.  qRT-PCR analysis demonstrated that the levels of brahma mRNA in the fat body are progressively increased during the previtellogenic stage, then reach the peak and remain elevated in the vitellogenic phase.  Furthermore, brahma is expressed in response to gonadotropic juvenile hormone (JH).  Knockdown of brahma led to a marked reduction in Vg expression within the fat body, along with arrested ovarian growth.  These findings shed light on the involvement of brahma-mediated chromatin remodeling in JH-stimulated fat body reconstruction and reproduction of adult female locusts.
Keywords:  fat body reconstruction       transcriptome analysis        chromatin remodeling        juvenile hormone        female reproduction  
Received: 11 February 2024   Accepted: 30 April 2024
Fund: This study was supported by the National Natural Science Foundation of China (32172389), the Excellent Youth Foundation of Henan Province, China (232300421029) and the Key Research and Development Project of Henan Province, China (221111112200).
About author:  Yiying Li, E-mail: liyiying_zz@163.com; #Correspondence Zhongxia Wu, Mobile: +86-15736850325, E-mail: wuz@vip.henu.edu.cn; Shutang Zhou, E-mail: szhou@henu.edu.cn

Cite this article: 

Yiying Li, Yuanyuan Hu, Bei Wang, Mengyao Lang, Shutang Zhou, Zhongxia Wu. 2025. Transcriptome-based analysis reveals chromatin remodeling in post-adult eclosion reconstruction of the insect fat body. Journal of Integrative Agriculture, 24(2): 668-679.

Ables E T, Drummond-Barbosa D. 2010. The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila. Cell Stem Cell, 7, 581-592.

Basnet S, Kamble S T. 2018. Knockdown of the chromatin remodeling gene Brahma by RNA Interference reduces reproductive fitness and lifespan in common Bed Bug (Hemiptera: Cimicidae). Journal of Medical Entomology55, 534-539.

Van Der Burg K R L, Lewis J J, Martin A, Nijhout H F, Danko C G, Reed R D. 2019. Contrasting roles of transcription factors Spineless and EcR in the highly dynamic chromatin landscape of butterfly wing metamorphosis. Cell Reports27, 1027-1038.e3.

Chen Y X, Chen Y S, Shi C M, Huang Z B, Zhang Y, Li S K, Li Y, Ye J, Yu C, Li Z, Zhang X Q, Wang J, Yang H M, Fang L, Chen Q. 2018. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience, 7, 1-6.

Collins R T, Treisman J E. 2000. Osa-containing Brahma chromatin remodeling complexes are required for the repression of wingless target genes. Genes & Development14, 3140-3152.

Dhadialla T S, Cook K E, Wyatt G R. 1987. Vitellogenin mRNA in locust fat body: Coordinate induction of two genes by a juvenile hormone analog. Developmental Biology123, 108-114.

Fishilevich E, Velez A M, Khajuria C, Frey M L, Hamm R L, Wang H, Schulenberg G A, Bowling A J, Pence H E, Gandra P, Arora K, Storer N P, Narva K E, Siegfried B D. 2016. Use of chromatin remodeling ATPases as RNAi targets for parental control of western corn rootworm (Diabrotica virgifera virgifera) and Neotropical brown stink bug (Euschistus heros). Insect Biochemistry and Molecular Biology71, 58-71.

George S, Palli S R. 2020. Histone deacetylase 11 knockdown blocks larval development and metamorphosis in the red flour beetle, Tribolium castaneum. Frontier in Genetics11, 683.

Guo W, Wu Z X, Song J S, Jiang F, Wang Z M, Deng S, Walker V K, Zhou S T. 2014. Juvenile hormone-receptor complex acts on mcm4 and mcm7 to promote polyploidy and vitellogenesis in the migratory locust. Plos Genetics10, e1004702.

Guo W, Wu Z X, Yang L B, Cai Z Q, Zhao L F, Zhou S T. 2019. Juvenile hormone-dependent Kazal-type serine protease inhibitor Greglin safeguards insect vitellogenesis and egg production. FASEB Journal33, 917-927.

Hargreaves D C, Crabtree G R. 2011. ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms. Cell Research21, 396-420.

He J, Chen Q Q, Wei Y Y, Jiang F, Yang M G, Hao S G, Guo X J, Chen D H, Kang L. 2016. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proceedings of the National Academy of Sciences of the United States of America113, 584-589.

Ho L, Crabtree G R. 2010. Chromatin remodelling during development. Nature, 463, 474-484.

Hota S K, Bruneau B G. 2016. ATP-dependent chromatin remodeling during mammalian development. Development143, 2882-2897.

Jia Q Q, Li S. 2023. Mmp-induced fat body cell dissociation promotes pupal development and moderately averts pupal diapause by activating lipid metabolism. Proceedings of the National Academy of Sciences of the United States of America120, e2215214120.

Jia Q Q, Liu S N, Wen D, Cheng Y X, Bendena W G, Wang J, Li S. 2017. Juvenile hormone and 20-hydroxyecdysone coordinately control the developmental timing of matrix metalloproteinase-induced fat body cell dissociation. The Journal of Biological Chemistry292, 21504-21516.

Jin Y Y, Xu J J, Yin M X, Lu Y, Hu L X, Li P X, Zhang P, Yuan Z Q, Ho M S, Ji H B, Zhao Y, Zhang L. 2013. Brahma is essential for Drosophila intestinal stem cell proliferation and regulated by Hippo signaling. eLife2, e00999.

Jindra M, Palli S R, Riddiford L M. 2013. The juvenile hormone signaling pathway in insect development. Annual Review of Entomology, 58, 181-204.

Jindra M, Belles X, Shinoda T. 2015. Molecular basis of juvenile hormone signaling. Current Opinion in Insect Science11, 39-46.

Jing Y P, Wen X P, Li L J, Zhang S J, Zhang C, Zhou S T. 2021. The vitellogenin receptor functionality of the migratory locust depends on its phosphorylation by juvenile hormone. Proceedings of the National Academy of Sciences of the United States of America118, e2106908118.

Khajuria C, Velez A M, Rangasamy M, Wang H, Fishilevich E, Frey M L, Carneiro N P, Gandra P, Narva K E, Siegfried B D. 2015. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Insect Biochemistry and Molecular Biology63, 54-62.

Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology37, 907-915.

Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics9, 559.

Li S, Yu X Q, Feng Q L. 2019. Fat body biology in the last decade. Annual Review of Entomology64, 315-333.

Li X, Mank J E, Ban L. 2022. Grasshopper genome reveals long-term conservation of the X chromosome and temporal variation in X chromosome evolution. BioRxiv,.

Li Y J, Ma Q, Cherry C M, Matunis E L. 2014. Steroid signaling promotes stem cell maintenance in the Drosophila testis. Developmental Biology394, 129-141.

Liu H H, Wang J, Li S. 2014. E93 predominantly transduces 20-hydroxyecdysone signaling to induce autophagy and caspase activity in Drosophila fat body. Insect Biochemistry and Molecular Biology45, 30-39.

Liu P C, Fu X N, Zhu J S. 2018. Juvenile hormone-regulated alternative splicing of the taiman gene primes the ecdysteroid response in adult mosquitoes. Proceedings of the National Academy of Sciences of the United States of America115, E7738-E7747.

Liu P C, Peng H J, Zhu J S. 2015. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein. Proceedings of the National Academy of Sciences of the United States of America112, E1871-1879.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Millan-Zambrano G, Burton A, Bannister A J, Schneider R. 2022. Histone post-translational modifications - cause and consequence of genome function. Nature Reviews Genetics23, 563-580.

Moshkin Y M, Mohrmann L, Van Ijcken W F, Verrijzer C P. 2007. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Molecular Biology and Evolution27, 651-661.

Neumuller R A, Richter C, Fischer A, Novatchkova M, Neumuller K G, Knoblich J A. 2011. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell8, 580-593.

Nystrom S L, Niederhuber M J, Mckay D J. 2020. Expression of E93 provides an instructive cue to control dynamic enhancer activity and chromatin accessibility during development. Development147, dev181909.

Ojani R, Liu P, Fu X, Zhu J. 2016. Protein kinase C modulates transcriptional activation by the juvenile hormone receptor methoprene-tolerant. Insect Biochemistry and Molecular Biology70, 44-52.

Roy S, Saha T T, Zou Z, Raikhel A S. 2018. Regulatory pathways controlling female insect reproduction. Annual Review of Entomology63, 489-511.

Santos C G, Humann F C, Hartfelder K. 2019. Juvenile hormone signaling in insect oogenesis. Current Opinion in Insect Science31, 43-48.

Suzuki M M, Bird A. 2008. DNA methylation landscapes: Provocative insights from epigenomics. Nature Reviews Genetics9, 465-476.

Tamkun J W, Deuring R, Scott M P, Kissinger M, Pattatucci A M, Kaufman T C, Kennison J A. 1992. brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF 2 SWI 2. Cell68, 561–572.

Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution38, 3022-3027.

Treisman J E, Luk A, Rubin G M, Heberlein U. 1997. eyelid antagonizes wingless signaling during Drosophila development and has homology to the Bright family of DNA-binding proteins. Genes & Development11, 1949-1962.

Uyehara C M, Nystrom S L, Niederhuber M J, Leatham-Jensen M, Ma Y, Buttitta L A, Mckay D J. 2017. Hormone-dependent control of developmental timing through regulation of chromatin accessibility. Genes & Development31, 862-875.

Wang R R, Li Q, Helfer C M, Jiao J, You J X. 2012. Bromodomain protein Brd4 associated with acetylated chromatin is important for maintenance of higher-order chromatin structure. The Journal of Biological Chemistry287, 10738-10752.

Wang Z M, Yang L B, Song J S, Kang L, Zhou S T. 2017. An isoform of Taiman that contains a PRD-repeat motif is indispensable for transducing the vitellogenic juvenile hormone signal in Locusta migratoria. Insect Biochemistry and Molecular Biology82, 31-40.

Wei Q, Zhu X H, Wan P J, He J C, Wang W X, Lai F X, Fu Q. 2022. Knockdown of the chromatin remodeling ATPase gene Brahma impairs the reproductive potential of the brown planthopper, Nilaparvata lugens. Pesticide Biochemistry and Physiology184, 105106.

Wu T Z, Hu E Q, Xu S B, Chen M J, Guo P F, Dai Z H, Feng T Z, Zhou L, Tang W L, Zhan L, Fu X C, Liu S S, Bo X C, Yu G C. 2021. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation2, 100141.

Wu Z X, Guo W, Yang L B, He Q J, Zhou S T. 2018. Juvenile hormone promotes locust fat body cell polyploidization and vitellogenesis by activating the transcription of Cdk6 and E2f1. Insect Biochemistry and Molecular Biology102, 1-10.

Wu Z X, Yang L B, He Q J, Zhou S T. 2021a. Regulatory mechanisms of vitellogenesis in insects. Frontiers in Cell and Developmental Biology8, 593613.

Wu Z X, Yang L B, Li H H, Zhou S T. 2021b. Kruppel-homolog 1 exerts anti-metamorphic and vitellogenic functions in insects via phosphorylation-mediated recruitment of specific cofactors. BMC biology, 19, 222.

Xie K, Tian L, Guo X Y, Li K, Li J P, Deng X J, Li Q R, Xia Q Y, Zhong Y J, Huang Z J, Liu J P, Li S, Yang W Y, Cao Y. 2016. BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20-hydroxyecdysone or starvation. Autophagy12, 381-396.

Xu S B, Li L, Luo X, Chen M J, Tang W L, Zhan L, Dai Z H, Lam T T, Guan Y, Yu G C. 2022. A serialized data object for visualization of a phylogenetic tree and annotation data. iMeta1, e56.

Yang Y, Zhao T J, Li Z, Qian W L, Peng J, Wei L, Yuan D Q, Li Y Y, Xia Q Y, Cheng D J. 2021. Histone H3K27 methylation-mediated repression of Hairy regulates insect developmental transition by modulating ecdysone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America118, e2101442118.

Zhao Z, Li L, Zeng R C, Lin L G, Yuan D W, Wen Y J, Li N, Cui Y Y, Zhu S M, Zhang Z M, Li S, Ren C H. 2023. 5mC modification orchestrates choriogenesis and fertilization by preventing prolonged ftz-f1 expression. Nature Communications14, 8234.

Zheng H Y, Wang N B, Yun J Q, Xu H J, Yang J B, Zhou S T. 2022. Juvenile hormone promotes paracellular transport of yolk proteins via remodeling zonula adherens at tricellular junctions in the follicular epithelium. PLoS Genetics18, e1010292.

[1] Chengxian Sun, Yaoguo Qin, Julian Chen, Zhengxi Li. The biosynthesis of alarm pheromone in the wheat aphid Rhopalo-siphum padi is regulated by hormones via fatty acid metabolism[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2346-2361.
No Suggested Reading articles found!