Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 147-160    DOI: 10.1016/j.jia.2024.08.006
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
The pseudo-type response regulator gene Clsc regulates rind stripe coloration in watermelon

Dongming Liu*, Jinfang Liang*, Quanquan Liu, Yaxin Chen, Shixiang Duan, Dongling Sun, Huayu Zhu, Junling Dou, Huanhuan Niu, Sen Yang, Shouru Sun, Jianbin Hu, Luming Yang#

College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
 Highlights 
The abnormal chloroplast structure and decreased chlorophyll content lead to the light green stripe phenotype.
The light green stripe trait follows the single recessive inheritance pattern. 
Mutations in the 7th intron of the Cla97C09G175170 gene cause changes in the amino acid sequence and alter stripe color.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

西瓜的果皮颜色和条纹是影响市场消费选择的关键外观品质性状。作为典型性状之一,西瓜果皮条纹的颜色明显较果皮背景颜色深,因此西瓜常被作为植物条纹研究的理想材料。但受种质资源的限制,目前我们对西瓜条纹着色机制的了解仍不深入。本研究以一份浅色条纹西瓜为研究材料,遗传分析结果表明这一性状由一个隐性基因控制,结合F2群体将控制条纹着色的基因ClscCitrullus lanatus stripe coloration)定位到第9染色体上的一个147.6 kb区域内。结合基因功能和表达量分析结果,编码APRR2转录因子的Cla97C09G175170基因被推定为控制西瓜条纹着色的关键基因。生理实验结果表明Cla97C09G175170可能通过影响叶绿体的发育和叶绿素的代谢影响西瓜果皮的颜色形成。本研究结果将有助于更好地理解西瓜条纹颜色形成的分子机制,并为新品种的分子标记辅助选择提供帮助。



Abstract  
The color and pattern of watermelon rind are crucial external traits that directly affect consumer preferences.  Watermelons with stripes having a stronger color than the background rind are ideal for studying stripe patterns in plants, while there is still limited knowledge about the genetic mechanisms underlying stripe coloration due to the lack of germplasm resources.  In this study, we focused on a watermelon germplasm with colorless stripes, and genetic analysis revealed that the trait is controlled by a single recessive gene.  The gene Clsc (Citrullus lanatus stripe coloration), which is responsible for the colorless stripe, was localized into a 147.6 kb region on Chr9 by linkage analysis in a large F2 mapping population.  Further analysis revealed that the Cla97C09G175170 gene encodes the APRR2 transcription factor, plays a crucial role in determining the watermelon colorless stripe phenotype and was deduced to be related to chlorophyll synthesis and chloroplast development.  Physiological experiments indicated that Cla97C09G175170 may significantly influence chloroplast development and chlorophyll synthesis in watermelon.  The results of this study provide a better understanding of the molecular mechanism of stripe coloration in watermelon and can be useful in the development of marker-assisted selection (MAS) for new watermelon cultivars.


Keywords:  watermelon stripe       coloration        inheritance        gene mapping        transcriptome  
Received: 04 September 2023   Accepted: 31 May 2024
Fund: 
This research was supported by grants from the Key Scientific and Technological Project of Henan Province, China (222102110124), the Joint Fund of Science and Technology Research and Development Plan, Henan Province, China  (222103810009), the National Natural Science Foundation of China (32172574, 3217180560), the Funding of Joint Research on Agricultural Varieties Improvement of Henan Province, China (2022010503), the Major Science and Technology Project of Henan Province, China (221100110400), the Natural Science Foundation of Henan, China (222300420050), and the Science and Technology Innovation Talent Support Program of Henan Province, China (23HASTIT034).
About author:  Dongming Liu, E-mail: liudongming5668@163.com; Jinfang Liang, E-mail: 1398961601@qq.com; #Correspondence Luming Yang, E-mail: lumingyang@henau.edu.cn *These authors contributed equally to this study.

Cite this article: 

Dongming Liu, Jinfang Liang, Quanquan Liu, Yaxin Chen, Shixiang Duan, Dongling Sun, Huayu Zhu, Junling Dou, Huanhuan Niu, Sen Yang, Shouru Sun, Jianbin Hu, Luming Yang. 2025. The pseudo-type response regulator gene Clsc regulates rind stripe coloration in watermelon. Journal of Integrative Agriculture, 24(1): 147-160.

Breathnach R, Benoist C, O’Hare K, Gannon F, Chambon P. 1978. Ovalbumin gene: Evidence for a leader sequence in mRNA and DNA sequences at the exon–intron boundaries. Proceedings of the National Academy of Sciences of the United States of America75, 4853–4857.

Chen X, Li J, Yu Y, Kou X, Periakaruppan R, Chen X, Li X. 2022. STAY-GREEN and light-harvesting complex II chlorophyll a/b binding protein are involved in albinism of a novel albino tea germplasm ‘Huabai 1’. Scientia Horticulturae293, 110653.

Deng Y, Liu S, Zhang Y, Tan J, Li X, Chu X, Xu B, Tian Y, Sun Y, Li B, Xu Y, Deng X W, He H, Zhang X. 2022. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Molecular Plant15, 1268–1284.

Dou J, Wang Y, Yang H, Niu H, Liu D, Yang S, Zhu H, Yang L. 2022. Development of branchless watermelon near isogenic lines by marker assisted selection. Horticultural Plant Journal8, 627–636.

FAO. 2022. FAOSTAT. http://faostat3.fao.org/download/T/TP/E

Fitter D W, Martin D J, Copley M J, Scotland R W, Langdale J A. 2002. GLK gene pairs regulate chloroplast development in diverse plant species. The Plant Journal31, 713–727.

Gama R N, Santos C A, Dias R C, Alves J C, Nogueira T O. 2015. Microsatellite markers linked to the locus of the watermelon fruit stripe pattern. Genetics & Molecular Research14, 269–276.

Głowacka K, Kromdijk J, Salesse-Smith C E, Smith C, Driever S M, Long S P. 2023. Is chloroplast size optimal for photosynthetic efficiency? New Phytologist239, 2197–2211.

Guo S, Zhang J, Sun H, Salse J, Lucas W J, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham B K, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, et al. 2013. The draft genome of watermelon Citrullus lanatus and resequencing of 20 diverse accessions. Nature Genetics45, 51–58.

Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X, Zhang H, Shang J, Gong G, Wen C, He N, Tian S, Li M, Liu J, Wang Y, et al. 2019. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics51, 1616–1623.

Hu J, Gao L, Xu Y, Li Q, Zhu H, Yang L, Li J, Sun S. 2019. Microsatellite markers reveal genetic diversity and relationships within a melon collection mainly comprising asian cultivated and wild germplasms. Biomed Research International, 7495609.

Jiao J, Liu H, Liu J, Cui M, Xu J, Meng H, Li Y, Chen S, Cheng Z. 2017. Identification and functional characterization of APRR2 controlling green immature fruit color in cucumber Cucumis sativus L. Plant Growth Regulation83, 233–243.

Jiang L, Fu Y, Tian X, Ma Y, Chen F, Wang J. 2022. The anthurium APRR2-like gene promotes photosynthetic pigment accumulation in response to salt stress. Tropical Plant Biology15, 12–21.

Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology37, 907–915.

Kim H, Han D, Kang J, Choi Y, Levi A, Lee G P, Park Y. 2015. Sequence-characterized amplified polymorphism markers for selecting rind stripe pattern in watermelon Citrullus lanatus L. HorticultureEnvironmentand Biotechnology56, 341–349.

Korn R W. 2007. Watermelon stripes. A case for the clonal mosaic model in plants. Journal of Theoretical Biology247, 859–861.

Kumar R, Wehner T C. 2011. Discovery of second gene for solid dark green versus light green rind pattern in watermelon. Journal of Heredity102, 489–493.

Levi A, Jarret R, Kousik S, Patrick Wechter W, Nimmakayala P, Reddy U K. 2017. Genetic resources of watermelon. In: Grumet R K N, Garcia-Mas J, eds., Genetics and Genomics of Cucurbitaceae. Vol 20. Springer, Cham. pp. 87–110.

Li H. 2009. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics Oxford England25, 1754–1760.

Liu D, Sun D, Liang J, Dou J, Yang S, Zhu H, Hu J, Sun S, Yang L. 2021. Characterization and bulk segregant analysis of ‘moon and star’ appearance in watermelon. Scientia Horticulturae285, 110140.

Liu D, Yang H, Yuan Y, Zhu H, Zhang M, Wei X, Sun D, Wang X, Yang S, Yang L. 2020. Comparative transcriptome analysis provides insights into yellow rind formation and preliminary mapping of the Clyr (yellow rind) gene in watermelon. Frontiers in Plant Science11, 192.

Lou L, Wehner T. 2016. Qualitative inheritance of external fruit traits in watermelon. HortScience51, 487–496.

Maragal S, Nagesh G C, Lakshmana Reddy D C, Rao Eguru Sreenivasa. 2022. QTL mapping identifies novel loci and putative candidate genes for rind traits in watermelon. 3 Biotech12, 46.

Maragal S, Rao E S, Lakshmana R D C. 2019. Genetic analysis of fruit quality traits in prebred lines of watermelon derived from a wild accession of Citrullus amarusEuphytica215, 1–15.

Murray M G, Thompson W. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research239, 487–491.

Oren E, Tzuri G, Vexler L, Dafna A, Meir A, Faigenboim A, Kenigswald M, Portnoy V, Schaffer A A, Levi A, Buckler E S, Katzir N, Burger J, Tadmor Y, Gur A. 2019. The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon. Journal of Experimental Botany70, 3781–3794.

Pan Y, Bradley G, Pyke K, Ball G, Lu C, Fray R, Marshall A, Jayasuta S, Baxter C, Van W R. 2013. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiology161, 1476–1485.

Park S W, Kim K T, Kang S C, Yang H B. 2016. Rapid and practical molecular marker development for rind traits in watermelon. HorticultureEnvironmentand Biotechnology57, 385–391.

Park Y, Cho S. 2012. Watermelon production and breeding in South Korea. Israel Journal of Plant Sciences60, 415–423.

Poole C F. 1944. Genetics of cultivated cucurbits. Journal of Heredity35, 122–128.

Wang D, Zhang M, Xu N, Yang S, Dou J, Liu D, Zhu L, Zhu H, Hu J, Ma C, Yang L, Sun S. 2022. Fine mapping a ClGS gene controlling dark-green stripe rind in watermelon. Scientia Horticulturae291, 110583.

Wang Y, Duan S, Kang Q, Liu D, Yang S, Niu H, Zhu H, Sun S, Hu J, Dou J, Yang L. 2023. Genetic mapping of a candidate gene ClIS controlling intermittent stripe rind in watermelon. Horticulturae9, 263.

Waters M T, Wang P, Korkaric M, Capper R G, Saunders N J, Langdale J A. 2009. GLK transcription factors coordinate expression of the photosynthetic apparatus in ArabidopsisPlant Cell21, 1109–1128.

Weetman M L. 1935. Inheritance and correlation of shape, size, color and time of maturity in the watermelon (Citrullus vulgaris Schrad.). Ph D thesis, Iowa State University, USA.

Yang H B, Park S, Park Y, Lee G P, Kang S C, Kim Y K. 2015. Linkage analysis of the three loci determining rind color and stripe pattern in watermelon. Horticultural Science & Technology33, 559–565.

Yue C, Wang Z, Yang P. 2021. Review: The effect of light on the key pigment compounds of photosensitive etiolated tea plant. Botanical Studies62, 1–15.

Zhang Z, Zhang Y, Sun L, Qiu G, Sun Y, Zhu Z, Luan F, Wang X. 2018. Construction of a genetic map for Citrullus lanatus based on CAPS markers and mapping of three qualitative traits. Scientia Horticulturae233, 532–538.

Zhao M H, Li X, Zhang X X, Zhang H, Zhao X Y. 2020. Mutation mechanism of leaf color in plants: A review. Forests11, 851.

Zhu H, Song P, Koo D H, Guo L, Li Y, Sun S, Weng Y, Yang L. 2016. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis. BMC Genomics17, 1–17.

Zhu L, Wang Y, Zhang Z, Hu D, Wang Z, Hu J, Ma C, Yang L, Sun S, Li Y. 2022. Chromosomal fragment deletion in APRR2-repeated locus modulates the dark stem color in Cucurbita pepoTheoretical and Applied Genetics135, 4277–4288.

[1] Lijiao Ge, Weihao Miao, Kuolin Duan, Tong Sun, Xinyan Fang, Zhiyong Guan, Jiafu Jiang, Sumei Chen, Weimin Fang, Fadi Chen, Shuang Zhao. Comparative transcriptome analysis identifies key regulators of nitrogen use efficiency in chrysanthemum[J]. >Journal of Integrative Agriculture, 2025, 24(1): 176-195.
[2] Meixue Sun, Tong Li, Yingjie Liu, Kenneth Wilson, Xingyu Chen, Robert I. Graham, Xianming Yang, Guangwei Ren, Pengjun Xu. A dicistrovirus increases pupal mortality in Spodoptera frugiperda by suppressing protease activity and inhibiting larval diet consumption[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2723-2734.
[3] Qian Wang, Huimin Cao, Jingcheng Wang, Zirong Gu, Qiuyun Lin, Zeyan Zhang, Xueying Zhao, Wei Gao, Huijun Zhu, Hubin Yan, Jianjun Yan, Qingting Hao, Yaowen Zhang. Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.)[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2571-2588.
[4] Hengwei Yu, Zhimei Yang, Jianfang Wang, Huaxuan Li, Xuefeng Li, Entang Liang, Chugang Mei, Linsen Zan. Identification of key genes and metabolites involved in meat quality performance in Qinchuan cattle by WGCNA[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3923-3937.
[5] Yanmei Gao, Maoya Jing, Meng Zhang, Zhen Zhang, Yuqing Liu, Zhimin Wang, Yinghua Zhang. Transcriptomic and metabolomic analysis of changes in grain weight potential induced by water stress in wheat[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3706-3722.
[6] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[7] WU Zhe, YANG Xuan, ZHAO Yu-xuan, JIA Li. Identifying candidate genes involved in trichome formation on carrot stems by transcriptome profiling and resequencing [J]. >Journal of Integrative Agriculture, 2022, 21(12): 3589-3599.
[8] MA Wei-hua, WU Tong, ZHANG Zan, LI Hang, SITU Gong-ming, YIN Chuan-lin, YE Xin-hai, CHEN Meng-yao, ZHAO Xian-xin, HE Kang, LI Fei . Using transcriptome Shannon entropy to evaluate the off-target effects and safety of insecticidal siRNAs[J]. >Journal of Integrative Agriculture, 2022, 21(1): 170-177.
No Suggested Reading articles found!