Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 176-195    DOI: 10.1016/j.jia.2024.11.003
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Comparative transcriptome analysis identifies key regulators of nitrogen use efficiency in chrysanthemum

Lijiao Ge1, 2, 3, Weihao Miao1, 2, Kuolin Duan1, 2, Tong Sun1, 2, Xinyan Fang1, 2, Zhiyong Guan1, 2, Jiafu Jiang1, 2, Sumei Chen1, 2, Weimin Fang1, 2, Fadi Chen1, 2, Shuang Zhao1, 2#

1 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

2 Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China

3 Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226012, China

 Highlights 
Genes are more sensitive to changes in nitrogen (N) conditions in N-efficient genotype.
Several candidate genes related to N use efficiency are identified.
Eight hub genes involved in resistance to low N stress resistance are revealed.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

N)是决定菊花产量和品质的限制因子。不同基因型菊花氮利用效率(NUE)存在遗传变异。为探究影响菊花NUE的遗传因我们应用转录组技术分析了氮高效基因型‘南农丽黄’(‘LH’)和氮低效基因型‘南农雪峰’(XF)经低氮0.4 mM·L-1 N、正常氮8 mM·L-1 N)处理15 d和氮恢复处理1h(低氮处理15 d后转正常氮处理1h)的根系基因表达特征结果显示,两种基因型对不同氮处理表现出响应差异。正常氮和低氮处理下,氮高效基因型LH在农艺性状、氮累积量和谷氨酰胺合成酶活性中展现显著优势。低氮处理促进了LH的根系生长,但抑制了XF的根系生长。转录组分析发现,低氮处理增加了两基因型中部分N代谢、生长素脱落酸信号转导相关基因的表达以及‘LH’根系中赤霉素信号转导相关基因的表达氮恢复处理仅增加了LH细胞分裂素信号转导相关基因的表达。不同氮处理下,LHNRT2.1AMT1.1Gln1赤霉素和细胞分裂素信号转导相关基因的表达量均高于‘XF’,说明‘LH’根中与N代谢和激素生长素、脱落酸、赤霉素和细胞分裂素信号转导相关基因对不同氮处理响应比‘XF’更为敏感共表达网络分析结果显示,bZIP43bHLH93NPF6.3IBR10MYB62PP2CPP2C06NLP7八个枢纽基因可能是菊花氮素介导应答的关键调控因子,在氮高效基因型菊花抵御低氮胁迫、提高NUE的过程中发挥重要作用。本研究结果在遗传水平上揭示了调控菊花NUE的关键因素菊花氮高效利用这一复杂机理的理解提供了新视角同时也为菊花基因型改良和氮高效菊花基因型育种提供了有益依据。



Abstract  
Nitrogen (N) is a limiting factor that determines the yield and quality of chrysanthemum.  Genetic variation in N use efficiency (NUE) has been reported among chrysanthemum genotypes.  We performed a transcriptome analysis of two chrysanthemum genotypes, ‘Nannonglihuang’ (LH, N-efficient genotype) and ‘Nannongxuefeng’ (XF, N-inefficient genotype), under low N (0.4 mmol L–1 N) and normal N (8 mmol L–1 N) treatments for 15 d and an N recovery treatment for 12 h (low N treatment for 15 d and then normal N treatment for 12 h) to understand the genetic factors impacting NUE in chrysanthemum.  The two genotypes exhibited contrasting responses to the different N treatments.  The N-efficient genotype LH had significant superiority in agronomic traits, N accumulation and glutamine synthase activity under both normal N and low N treatments.  Low N treatment promoted root growth in LH, but inhibited root growth in XF.  Transcriptome analysis revealed that the low N treatment increased the expression of some N metabolism genes, genes related to auxin and abscisic acid signal transduction in the roots of both genotypes, as well as genes related to gibberellin signal transduction in roots of LH.  The N recovery treatment just increased the expression of genes related to cytokinin signal transduction in roots of LH.  The expression levels of the NRT2.1, AMT1.1, and Gln1 genes related to gibberellin and cytokinin signal transduction were higher in roots of LH than in XF under different N treatments, suggesting that the genes related to N metabolism and hormone (auxin, abscisic acid, gibberellin, and cytokinin) signal transduction in roots of LH are more sensitive to different N treatments than those of XF.  Co-expression network analysis (WGCNA) also identified hub genes like bZIP43, bHLH93, NPF6.3, IBR10, MYB62, PP2C, PP2C06 and NLP7, which may be the key regulators of N-mediated responses in chrysanthemum and play crucial roles in enhancing NUE and resistance to low N stress in the N-efficient chrysanthemum genotype.  These results revealed the key factors involved in regulating NUE in chrysanthemum at the genetic level, which provides new insights into the complex mechanism of efficient nitrogen utilization in chrysanthemum, and can be useful for the improvement and breeding of high NUE chrysanthemum genotypes.


Keywords:  chrysanthemum       genotype        NUE        gene expression        transcriptome analysis  
Received: 13 March 2023   Accepted: 27 September 2024
Fund: 

This study was supported by the National Key R&D Program of China (2020YFD1000400), the National Natural Science Foundation of China (32072603), the Jiangsu Agriculture Science and Technology Innovation Fund, China (CX(21)2004), and the JBGS Project of Seed Industry Revitalization in Jiangsu Province, China (JBGS[2021]020).

About author:  Lijiao Ge, E-mail: 2019104112@njau.edu.cn; #Correspondence Shuang Zhao, E-mail: zhaoshuang@njau.edu.cn

Cite this article: 

Lijiao Ge, Weihao Miao, Kuolin Duan, Tong Sun, Xinyan Fang, Zhiyong Guan, Jiafu Jiang, Sumei Chen, Weimin Fang, Fadi Chen, Shuang Zhao. 2025. Comparative transcriptome analysis identifies key regulators of nitrogen use efficiency in chrysanthemum. Journal of Integrative Agriculture, 24(1): 176-195.

Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. Nature Genetics25, 25–29.

Bouguyon E, Brun F, Meynard D, Kubes M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zazimalova E, Hoyerova K, Nacry P, Gojon A. 2015. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1Nature Plants1, 15015.

Brady S M, Sarkar S F, Bonetta D, McCourt P. 2003. The abscisic acid insensitive 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in ArabidopsisThe Plant Journal34, 67–75.

Brauer E K, Rochon A, Bi Y M, Bozzo G G, Rothstein S J, Shelp B J. 2011. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiologia Plantarum141, 361–372.

Chen J G, Fan X R, Qian K Y, Zhang Y, Song M Q, Liu Y, Xu G H, Fan X R. 2017. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnology Journal15, 1273–1283.

Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita M T, Aoyama T, Costantino P, Sabatini S. 2008. A genetic framework for the control of cell division and differentiation in the root meristem. Science322, 1380–1384.

Devaiah B N, Madhuvanthi R, Karthikeyan A S, Raghothama K G. 2009. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in ArabidopsisMolecular Plant2, 43–58.

Ding C Q, Wang Y, You S L, Liu Z H, Wang S H, Ding Y F. 2016. Digital gene expression analysis reveals nitrogen fertilizer increases panicle size by repressing Hd3a signaling in rice. Plant Growth Regulation79, 47–54.

Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K. 2009. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in ArabidopsisPlant & Cell Physiology50, 2123–2132.

Gao Y, de Bang T C, Schjoerring J K. 2019. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2Plant Biotechnology Journal17, 1209–1221.

Gao Z Y, Wang Y F, Chen G, Zhang A P, Yang S L, Shang L G, Wang D Y, Ruan B P, Liu C L, Jiang H Z, Dong G J, Zhu L, Hu J, Zhang G H, Zeng D L, Guo L B, Xu G H, Teng S, Harberd N P, Qian Q. 2019. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications10, 5207.

Garnett T, Plett D, Heuer S, Okamoto M. 2015. Genetic approaches to enhancing nitrogen-use efficiency (NUE) in cereals: Challenges and future directions. Functional Plant Biology42, 921–941.

Ge L J, Fang X Y, Zhang Y Y, Luo M T, Guan Z Y, Chen S M, Fang W M, Chen F D, Zhao S. 2021. Screening of nitrogen efficient varieties and its assessment system construction at seedling stage of chrysanthemum. Journal of Nanjing Agricultural University44, 1054–1062. (in Chinese)

Good A G, Shrawat A K, Muench D G. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science9, 597–605.

Guo S F, Pan J T, Zhai L M, Khoshnevisan B, Wu S X, Wang H Y, Yang B, Liu H B, Lei B K. 2020. The reactive nitrogen loss and GHG emissions from a maize system after a long-term livestock manure incorporation in the North China Plain. Science of the Total Environment720, 137558.

Gutierrez L, Mongelard G, Flokova K, Pacurar D I, Novak O, Staswick P, Kowalczyk M, Pacurar M, Demailly H, Geiss G, Bellini C. 2012. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell24, 2515–2527.

Hagen G, Guilfoyle T. 2002. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Molecular Biology49, 373–385.

Hao T X, Zhu Q C, Zeng M F, Shen J B, Shi X J, Liu X J, Zhang F S, de Vries W. 2019. Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system. Plant and Soil434, 167–184.

Hawkesford M J. 2017. Genetic variation in traits for nitrogen use efficiency in wheat. Journal of Experimental Botany68, 2627–2632.

Hedden P, Sponsel V. 2015. A century of gibberellin research. Journal of Plant Growth Regulation34, 740–760.

Higuchi M, Pischke M S, Mahonen A P, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman M R, Kakimoto T. 2004. In planta functions of the Arabidopsis cytokinin receptor family. Proceedings of the National Academy of Sciences of the United States of America101, 8821–8826.

Ilyas N, Gull R, Mazhar R, Saeed M, Kanwal S, Shabir S, Bibi F. 2017. Influence of salicylic acid and jasmonic acid on wheat under drought stress. Communications in Soil Science and Plant Analysis48, 2715–2723.

Jia Q Q, Wang F, Liu Q L. 2016. Growing of floricultural industry in China. Acta Horticulturae1129, 85–94.

Jiao X Q, Mongol N, Zhang F S. 2018. The transformation of agriculture in China: Looking back and looking forward. Journal of Integrative Agriculture17, 755–764.

Kaiser B N, Rawat S R, Siddiqi M Y, Masle J, Glass A. 2002. Functional analysis of an Arabidopsis T-DNA “Knockout” of the high-affinity NH4+ transporter AtAMT1;1Plant Physiology130, 1263–1275.

Kessel B, Schierholt A, Becker H C. 2012. Nitrogen use efficiency in a genetically diverse set of winter oilseed rape (Brassica napus L.). Crop Science52, 2546.

Konishi N, Ishiyama K, Beier M P, Inoue E, Kanno K, Yamaya T, Takahashi H, Kojima S. 2017. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. Journal of Experimental Botany68, 610–625.

Krapp A, David L C, Chardin C, Girin T, Marmagne A, Leprince A, Chaillou S, Ferrario-Mery S, Meyer C, Daniel-Vedele F. 2014. Nitrate transport and signaling in ArabidopsisJournal of Experimental Botany65, 789–798.

Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics9, 559.

Laugier E, Bouguyon E, Mauries A, Tillard P, Gojon A, Lejay L. 2012. Regulation of high-affinity nitrate uptake in roots of Arabidopsis depends predominantly on posttranscriptional control of the NRT2.1/NAR2.1 transport system. Plant Physiology158, 1067–1078.

Li Q, Ding G D, Yang N M, White P J, Ye X S, Cai H M, Lu J W, Shi L, Xu F S. 2020. Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L. Plant Cell and Environment43, 712–731.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods25, 402–408.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Manschadi A M, Kaul H, Vollmann J, Eitzinger J, Wenzel W. 2014. Developing phosphorus-efficient crop varieties - An interdisciplinary research framework. Field Crops Research162, 87–98.

Manschadi A M, Soltani A. 2021. Variation in traits contributing to improved use of nitrogen in wheat: Implications for genotype by environment interaction. Field Crops Research270, 108211.

Marchive C, Roudier F, Castaings L, Brehaut V, Blondet E, Colot V, Meyer C, Krapp A. 2013. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nature Communications4, 1713.

Mcdonald T R, Dietrich F S, Lutzoni F. 2012. Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: Toward a new functional and evolutionary classification. Molecular Biology and Evolution29, 51–60.

Mochizuki S, Jikumaru Y, Nakamura H, Koiwai H, Sasaki K, Kamiya Y, Ichikawa H, Minami E, Nishizawa Y. 2014. Ubiquitin ligase EL5 maintains the viability of root meristems by influencing cytokinin-mediated nitrogen effects in rice. Journal of Experimental Botany65, 2307–2318.

Moison M, Marmagne A, Dinant S, Soulay F, Azzopardi M, Lothier J, Citerne S, Morin H, Legay N, Chardon F, Avice J C, Reisdorf-Cren M, Masclaux-Daubresse C. 2018. Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in ArabidopsisJournal of Experimental Botany69, 4379–4393.

Morikawa H, Takahashi M, Sakamoto A, Ueda-Hashimoto M, Matsubara T, Miyawaki K, Kawamura Y, Hirata T, Suzuki H. 2005. Novel metabolism of nitrogen in plants. Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences60, 265–271.

Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G. 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proceedings of the National Academy of Sciences of the United States of America101, 8039–8044.

Obertello M, Krouk G, Katari M S, Runko S J, Coruzzi G M. 2010. Modeling the global effect of the basic-leucine zipper transcription factor 1 (bZIP1) on nitrogen and light regulation in ArabidopsisBMC Systems Biology4, 111.

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. 1999. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research27, 29–34.

Osugi A, Sakakibara H. 2015. Q&A: How do plants respond to cytokinins and what is their importance? BMC Biology13, 102.

Ranathunge K, El-Kereamy A, Gidda S, Bi Y M, Rothstein S J. 2014. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. Journal of Experimental Botany65, 965–979.

Ruegger M, Dewey E, Gray W M, Hobbie L, Turner J, Estelle M. 1998. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1pGenes & Development12, 198–207.

Ruffel S, Chaput V, Przybyla-Toscano J, Fayos I, Ibarra C, Moyano T, Fizames C, Tillard P, O’Brien J A, Gutierrez R A, Gojon A, Lejay L. 2021. Genome-wide analysis in response to nitrogen and carbon identifies regulators for root AtNRT2 transporters. Plant Physiology186, 696–714.

Sasaki K, Mitsuda N, Nashima K, Kishimoto K, Katayose Y, Kanamori H, Ohmiya A. 2017. Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology. BMC Genomics18, 954.

Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research13, 2498–2504.

Sinha S K, Sevanthi A M V, Chaudhary S, Tyagi P, Venkadesan S, Rani M, Mandal P K. 2018. Transcriptome analysis of two rice varieties contrasting for nitrogen use efficiency under chronic N starvation reveals differences in chloroplast and starch metabolism-related genes. Genes9, 206.

Soon F F, Ng L M, Zhou X E, West G M, Kovach A, Tan M H E, Suino-Powell K M, He Y Z, Xu Y, Chalmers M J, Brunzelle J S, Zhang H M, Yang H Y, Jiang H L, Li J, Yong E L, Cutler S, Zhu J K, Griffin P R, Melcher K, et al. 2012. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science335, 85–88.

Strader L C, Culler A H, Cohen J D, Bartel B. 2010. Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Plant Physiology153, 1577–1586.

Subudhi P K, Garcia R S, Coronejo S, Tapia R. 2020. Comparative transcriptomics of rice genotypes with contrasting responses to nitrogen stress reveals genes influencing nitrogen uptake through the regulation of root architecture. International Journal of Molecular Sciences21, 5759.

Tegeder M, Masclaux-Daubresse C. 2018. Source and sink mechanisms of nitrogen transport and use. New Phytologist217, 35–53.

Thomas R L, Sheard R W, Moyer J R. 1967. Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agronomy Journal59, 240–243.

Tian C E, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto K T. 2004. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant Journal40, 333–343.

Tsay Y F, Schroeder J I, Feldmann K A, Crawford N M. 1993. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell72, 705–713.

Wang F M, Matsuoka M. 2018. Improved nutrient use gives cereal crops a boost. Nature560, 563–564.

Wang W, Hu B, Yuan D Y, Liu Y Q, Che R H, Hu Y C, Ou S J, Liu Y X, Zhang Z H, Wang H R, Li H, Jiang Z M, Zhang Z L, Gao X K, Qiu Y H, Meng X B, Liu Y X, Bai Y, Liang Y, Wang Y Q, et al. 2018. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell30, 638–651.

Wei W, Hu B, Li A F, Chu C C. 2019. NRT1.1 in plants: Functions beyond nitrate transport. Journal of Experimental Botany71, 4373–4379.

Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell15, 2532–2550.

von Wirén N, Gazzarrini S, Gojon A, Frommer W B. 2000. The molecular physiology of ammonium uptake and retrieval. Current Opinion in Plant Biology3, 254–261.

Woodward A W, Bartel B. 2005. Auxin: Regulation, action, and interaction. Annals of Botany95, 707–735.

Wu K, Wang S S, Song W Z, Zhang J Q, Wang Y, Liu Q, Yu J P, Ye Y F, Li S, Chen J F, Zhao Y, Wang J, Wu X K, Wang M Y, Zhang Y J, Liu B M, Wu Y J, Harberd N P, Fu X D. 2020. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science367, eaaz2046.

Xiang H T, Wang T T, Zheng D F, Wang L Z, Feng Y J, Luo Y, Li R, Li Z J, Meng Y, Li W, Wang L M, Yang C J. 2017. ABA pretreatment enhances the chilling tolerance of a chilling-sensitive rice cultivar. Brazilian Journal of Botany40, 853–860.

Xing L, Zhao Y, Gao J H, Xiang C B, Zhu J K. 2016. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Scientific Reports6, 27177.

Xu G H, Fan X R, Miller A J. 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology63, 153–182.

Xuan W, Beeckman T, Xu G H. 2017. Plant nitrogen nutrition: Sensing and signaling. Current Opinion in Plant Biology39, 57–65.

Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology59, 225–251.

Yamaya T, Kusano M. 2014. Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice. Journal of Experimental Botany65, 5519–5525.

Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T. 2002. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. Journal of Experimental Botany53, 917–925.

Yu H, Moss B L, Jang S S, Prigge M, Klavins E, Nemhauser J L, Estelle M. 2013. Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity. Plant Physiology162, 295–303.

Yu L H, Wu J, Tang H, Yuan Y, Wang S M, Wang Y P, Zhu Q S, Li S G, Xiang C B. 2016. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation. Scientific Reports6, 27795.

Zhang Z H, Song H X, Liu Q, Rong X M, Guan C Y, Peng J W, Xie G X, Zhang Y P. 2010. Studies on differences of nitrogen efficiency and root characteristics of oilseed rape (Brassica napus L.) cultivars in relation to nitrogen fertilization. Journal of Plant Nutrition33, 1448–1459.

Zhao S P, Ye X Z, Shi W M. 2014. Expression of OsAMT1 (1.1–1.3) in rice varieties differing in nitrogen accumulation. Russian Journal of Plant Physiology61, 707–713.

[1] Zhao Liu, Yuan Gao, Kun Wang, Jianrong Feng, Simiao Sun, Xiang Lu, Lin Wang, Wen Tian, Guangyi Wang, Zichen Li, Qingshan Li, Lianwen Li, Dajiang Wang.

Identification of S-RNase genotype and analysis of its origin and evolutionary patterns in Malus plants [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1205-1221.

[2] MA Yu-xin, ZHOU Zhi-jun, CAO Hong-zhe, ZHOU Fan, SI He-long, ZANG Jin-ping, XING Ji-hong, ZHANG Kang, DONG Jin-gao. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3458-3473.
[3] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[4] WANG Pei-pei, WANG Zhao-ke, GUAN Le, Muhammad Salman HAIDER, Maazullah NASIM, YUAN Yong-bing, LIU Geng-sen, LENG Xiang-peng. Versatile physiological functions of the Nudix hydrolase family in berry development and stress response in grapevine[J]. >Journal of Integrative Agriculture, 2022, 21(1): 91-112.
No Suggested Reading articles found!