Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Circadian clock shapes diurnal gene expression patterns linked to glucose metabolic processes in Chinese cabbage
Shan Wang, Kailin Shi, Yufan Xiao, Wei Ma, Yiguo Hong, Daling Feng#, Jianjun Zhao#
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

生物钟作为植物体内的内源计时系统,通过调控基因表达的节律性以及各种生理代谢过程,从而提高植物对环境变化的适应性和竞争力,以达到最优化生长。大白菜(Brassica rapa ssp.pekinensis)作为十字花科重要的蔬菜作物,具有重要的经济价值。因此,解析生物钟对昼夜节律基因的影响,对提高大白菜的农艺性状和产量具有重要的指导意义。本研究以2份短周期自交系(“SPcc-1”和“SPcc-2”)和2份长周期自交系(“LPcc-1”和“LPcc-2”)为试材,在20ºC持续光照条件下取样进行时序转录组测序分析,发现大白菜32.7~50.5%的基因表达受生物钟调控,且节律基因的表达峰在短周期材料中出现较早,在长周期材料中出现较晚。大约250个可变剪切事件呈昼夜节律变化,其中内含子保留为主要的可变剪切类型。节律剪切基因包括生物钟核心基因:LATE ELONGATED HYPOCOTYLBrLHY)、REVEILLE 2BrRVE2)和EARLY FLOWERING 3BrELF3)。经转录水平及转录后水平分析,生物钟广泛影响着光合作用、卡尔文循环和三羧酸循环等糖代谢相关基因的周期性表达。本研究明确了生物钟参与的主要代谢途径,有助于利用生物钟调控大白菜的生长发育。



Abstract  

The plant circadian clock temporally drives gene expression through the day and coordinates various physiological process with diurnal environmental changes. It is essential to confer plant fitness and competitive advantage to survive and thrive under natural condition by circadian control of gene transcription. Chinese cabbage (Brassica rapa ssp. pekinensis) is an economically important vegetable crop worldwide; however, there is little information concerning its circadian clock system. Here we uncovered that gene expression patterns were affected by circadian oscillators at both transcriptional and post-transcriptional levels in Chinese cabbage. Time-course RNA-seq analyses were conducted on two short-period lines (SPcc-1 and SPcc-2) and two long-period lines (LPcc-1 and LPcc-2) under constant light. We showed that 32.7-50.5% of the genes were regulated by the circadian oscillator and the expression peak of cycling genes appeared even earlier in short-period lines compared to long-period lines. In addition, approximately 250 splicing events showed circadian regulation, of which intron retention (IR) accounted for a large proportion. Rhythmically spliced genes included the clock genes LATE ELONGATED HYOCOTYL (BrLHY), REVEILLE 2 (BrRVE2) and EARLY FLOWERING 3 (BrELF3). We also found that the circadian oscillator could notably influence the diurnal expression patterns of genes that are associated with glucose metabolism via photosynthesis, Calvin cycle and tricarboxylic acid (TCA) cycle at both transcriptional and post-transcriptional levels. Taken together, our results demonstrate that circadian-regulated physiological processes contribute to Chinese cabbage growth and development.

Keywords:  circadian clock       transcriptomek              alternative splicingk              glucose metabolismsk              Chinese cabbage  
Online: 29 August 2024  
Fund: 

This work was supported by S&T Program of Hebei (Grant No. 236Z2903G) and the Innovative Research Group Project of Hebei Natural Science Foundation (Grant No. C2020204111). We are grateful to Hebei International Joint Research Center of Vegetable Functional Genomics, and International Joint R&D Center of Hebei Province in Modern Agricultural Biotechnology for supporting this work. 

Cite this article: 

Shan Wang, Kailin Shi, Yufan Xiao, Wei Ma, Yiguo Hong, Daling Feng, Jianjun Zhao. 2024. Circadian clock shapes diurnal gene expression patterns linked to glucose metabolic processes in Chinese cabbage. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.08.026

Alabadı́ D, Oyama T, Yanovsky M J, Harmon F G, Más P, Kay S A. 2001. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 293, 880-883.

Bendix C, Marshall C M, Harmon F G. 2015. Circadian clock genes universally control key agricultural traits. Molecular Plant, 8, 1135-1152.

Bhardwaj V, Meier S, Petersen L N, Ingle R A, Roden L C. 2011. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. PLoS One, 6, e26968.

Cardona T, Shao S, Nixon P J. 2018. Enhancing photosynthesis in plants: the light reactions. Essays in Biochemistry, 62, 85-94.

Carré I A, Kim J Y. 2002. MYB transcription factors in the Arabidopsis circadian clock. Journal of Experimental Botany, 53, 1551-1557.

Carvalho R F, Carvalho S D, Duque P. 2010. The Plant-Specific SR45 Protein Negatively Regulates Glucose and ABA Signaling during Early Seedling Development in Arabidopsis. Plant Physiology, 154, 772-783.

Chaudhary S, Jabre I, Reddy A S, Staiger D, Syed N H. 2019. Perspective on alternative splicing and proteome complexity in plants. Trends in Plant Science, 24, 496-506.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194-1202.

Chen K, Dai X, Wu J. 2015. Alternative splicing: An important mechanism in stem cell biology. World Journal of Stem Cells, 7, 1-10.

Chen P, Liu P, Zhang Q, Zhao L, Hao X, Liu L, Bu C, Pan Y, Zhang D, Song Y. 2022. Dynamic physiological and transcriptome changes reveal a potential relationship between the circadian clock and salt stress response in Ulmus pumila. Molecular Genetics and Genomics, 297, 303-317.

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, i884-i890.

Chow B Y, Helfer A, Nusinow D A, Kay S A. 2012. ELF3 recruitment to the PRR9 promoter requires other Evening Complex members in the Arabidopsis circadian clock. Plant Signaling & Behavior, 7, 170-173.

Covington M F, Maloof J N, Straume M, Kay S A, Harmer S L. 2008. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology, 9, 1-18.

Deng X, Gu L, Liu C, Lu T, Lu F, Lu Z, Cui P, Pei Y, Wang B, Hu S. 2010. Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proceedings of the National Academy of Sciences, 107, 19114-19119.

Dixon L E, Knox K, Kozma-Bognar L, Southern M M, Pokhilko A, Millar A J. 2011. Temporal Repression of Core Circadian Genes Is Mediated through EARLY FLOWERING 3 in Arabidopsis. Current Biology, 21, 120-125.

Edgar R S, Green E W, Zhao Y, Van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja U K, Feeney K A. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature, 485, 459-464.

Edwards K D, Millar A J. 2007. Analysis of circadian leaf movement rhythms in Arabidopsis thaliana. Methods in Molecular Biology, 362, 103-113.

Facella P, Lopez L, Carbone F, Galbraith D W, Giuliano G, Perrotta G. 2008. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors. PLoS One, 3, e2798.

Farré E M, Harmer S L, Harmon F G, Yanovsky M J, Kay S A. 2005. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Current Biology, 15, 47-54.

Farré E M, Kay S A. 2007. PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis. The Plant Journal, 52, 548-560.

Farré E M, Liu T. 2013. The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Current Opinion in Plant Biology, 16, 621-629.

Ferrari C, Proost S, Janowski M, Becker J, Nikoloski Z, Bhattacharya D, Price D, Tohge T, Bar-Even A, Fernie A. 2019. Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida. Nature Communications, 10, 737.

Filichkin S A, Breton G, Priest H D, Dharmawardhana P, Jaiswal P, Fox S E, Michael T P, Chory J, Kay S A, Mockler T C. 2011. Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules. PLoS One, 6, e16907.

Filichkin S A, Mockler T C. 2012. Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes. Biology Direct, 7, 1-15.

Filichkin S A, Priest H D, Givan S A, Shen R, Bryant D W, Fox S E, Wong W-K, Mockler T C. 2010. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20, 45-58.

Gehan M A, Greenham K, Mockler T C, McClung C R. 2015. Transcriptional networks—crops, clocks, and abiotic stress. Current Opinion in Plant Biology, 24, 39-46.

Gendron J M, Pruneda-Paz J L, Doherty C J, Gross A M, Kang S E, Kay S A. 2012. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences, 109, 3167-3172.

Gibon Y, PYL E T, Sulpice R, Lunn J E, Hoehne M, Guenther M, Stitt M. 2009. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant, Cell & Environment, 32, 859-874.

Graciet E, Gans P, Wedel N, Lebreton S, Camadro J M, Gontero B. 2003. The small protein CP12: a protein linker for supramolecular complex assembly. Biochemistry, 42, 8163-8170.

Graf A, Schlereth A, Stitt M, Smith A M. 2010. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proceedings of the National Academy of Sciences, 107, 9458-9463.

Greenham K, Lou P, Remsen S E, Farid H, McClung C R. 2015. TRiP: Tracking Rhythms in Plants, an automated leaf movement analysis program for circadian period estimation. Plant Methods, 11, 1-11.

Greenham K, McClung C R. 2015. Integrating circadian dynamics with physiological processes in plants. Nature Reviews Genetics, 16, 598-610.

Greenham K, Sartor R C, Zorich S, Lou P, Mockler T C, McClung C R. 2020. Expansion of the circadian transcriptome in Brassica rapa and genome-wide diversification of paralog expression patterns. Elife, 9, e58993.

Grundy J, Stoker C, Carré I A. 2015. Circadian regulation of abiotic stress tolerance in plants. Frontiers in Plant Science, 6, 648.

Han J, Xiong J, Wang D, Fu X D. 2011. Pre-mRNA splicing: where and when in the nucleus. Trends Cell Biol, 21, 336-343.

Hayes K R, Beatty M, Meng X, Simmons C R, Habben J E, Danilevskaya O N. 2010. Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PloS One, 5, e12887.

Hazen S P, Schultz T F, Pruneda-Paz J L, Borevitz J O, Ecker J R, Kay S A. 2005. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proceedings of the National Academy of Sciences, 102, 10387-10392.

Helfer A, Nusinow D A, Chow B Y, Gehrke A R, Bulyk M L, Kay S A. 2011. LUX ARRHYTHMO Encodes a Nighttime Repressor of Circadian Gene Expression in the Arabidopsis Core Clock. Current Biology, 21, 126-133.

Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns M C, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Gonçalves J, Davis S J. 2012. EARLY FLOWERING4 Recruitment of EARLY FLOWERING3 in the Nucleus Sustains the Arabidopsis Circadian Clock  The Plant Cell, 24, 428-443.

Higashi T, Aoki K, Nagano A J, Honjo M N, Fukuda H. 2016. Circadian oscillation of the lettuce transcriptome under constant light and light–dark conditions. Frontiers in Plant Science, 7, 1114.

Hofmann N R. 2012. Evolution of the circadian clock in a whole-genome context. The Plant Cell, 24, 2239.

Hong S, Song H-R, Lutz K, Kerstetter R A, Michael T P, McClung C R. 2010. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 107, 21211-21216.

Huang W, Pérez-García P, Pokhilko A, Millar A, Antoshechkin I, Riechmann J L, Mas P. 2012. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science, 336, 75-79.

Huang W, Zhang L, Zhu Y, Chen J, Zhu Y, Lin F, Chen X, Huang J. 2022. A genetic screen in Arabidopsis reveals the identical roles for RBP45d and PRP39a in 5’cryptic splice site selection. Frontiers in Plant Science, 13, 1086506.

James A B, Syed N H, Bordage S, Marshall J, Nimmo G A, Jenkins G I, Herzyk P, Brown J W, Nimmo H G. 2012. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. The Plant Cell, 24, 961-981.

Jones M A, Williams B A, McNicol J, Simpson C G, Brown J W, Harmer S L. 2012. Mutation of Arabidopsis spliceosomal timekeeper locus1 causes circadian clock defects. The Plant Cell, 24, 4066-4082.

Kanno T, Lin W-D, Chang C-L, Matzke M, Matzke A J. 2018. A genetic screen identifies PRP18a, a putative second step splicing factor important for alternative splicing and a normal phenotype in Arabidopsis thaliana. G3: Genes, Genomes, Genetics, 8, 1367-1377.

Khan S, Rowe S C, Harmon F G. 2010. Coordination of the maize transcriptome by a conserved circadian clock. BMC plant biology, 10, 1-15.

Kikis E A, Khanna R, Quail P H. 2005. ELF4 is a phytochrome‐regulated component of a negative‐feedback loop involving the central oscillator components CCA1 and LHY. The Plant Journal, 44, 300-313.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12, 357-360.

Kim J A, Shim D, Kumari S, Jung H-e, Jung K-H, Jeong H, Kim W-Y, Lee S I, Jeong M-J. 2019. Transcriptome analysis of diurnal gene expression in Chinese cabbage. Genes, 10, 130.

Kolmos E, Nowak M, Werner M, Fischer K, Schwarz G, Mathews S, Schoof H, Nagy F, Bujnicki J M, Davis S J. 2009. Integrating ELF4 into the circadian system through combined structural and functional studies. HFSP journal, 3, 350-366.

Korneli C, Danisman S, Staiger D. 2014. Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock. Plant and Cell Physiology, 55, 1613-1622.

Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357-359.

Li B, Dewey C N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 1-16.

Li G, Siddiqui H, Teng Y, Lin R, Wan X-y, Li J, Lau O-S, Ouyang X, Dai M, Wan J. 2011. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nature Cell Biology, 13, 616-622.

Li S, Zhang L. 2015. Circadian control of global transcription. BioMed Research International, 2015.

Lou P, Wu J, Cheng F, Cressman L G, Wang X, McClung C R. 2012. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. The Plant Cell, 24, 2415-2426.

Lu S X, Webb C J, Knowles S M, Kim S H, Wang Z, Tobin E M. 2012. CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiology, 158, 1079-1088.

Ma W, Zhang P, Zhao J, Hong Y. 2023. Chinese cabbage: an emerging model for functional genomics in leafy vegetable crops. Trends in Plant Science, 28, 515-518.

Manna M, Rengasamy B, Sinha A K. 2023. Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement. Plant, Cell & Environment, 46, 2277-2295.

Marquez Y, Brown J W, Simpson C, Barta A, Kalyna M. 2012. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Research, 22, 1184-1195.

Marshall C M, Tartaglio V, Duarte M, Harmon F G. 2016. The Arabidopsis sickle mutant exhibits altered circadian clock responses to cool temperatures and temperature-dependent alternative splicing. The Plant Cell, 28, 2560-2575.

Martin W, Scheibe R, Schnarrenberger C. 2000. The Calvin Cycle and Its Regulation. In: Leegood R C, Sharkey T D, von Caemmerer S eds., Photosynthesis: Physiology and Metabolism. Springer Netherlands, Dordrecht. pp. 9-51.

Matsushika A, Makino S, Kojima M, Mizuno T. 2000. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant and Cell Physiology, 41, 1002-1012.

McClung C R. 2019. The plant circadian oscillator. Biology, 8, 14.

Michael T P, Mockler T C, Breton G, McEntee C, Byer A, Trout J D, Hazen S P, Shen R, Priest H D, Sullivan C M. 2008. Network discovery pipeline elucidates conserved time-of-day–specific cis-regulatory modules. PLoS Genetics, 4, e14.

Mun J-H, Kwon S-J, Yang T-J, Seol Y-J, Jin M, Kim J-A, Lim M-H, Kim J S, Baek S, Choi B-S. 2009. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biology, 10, 1-18.

Nagano A J, Sato Y, Mihara M, Antonio B A, Motoyama R, Itoh H, Nagamura Y, Izawa T. 2012. Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell, 151, 1358-1369.

Nakamichi N. 2020. The transcriptional network in the Arabidopsis circadian clock system. Genes, 11, 1284.

Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua N-H, Sakakibara H. 2010. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. The Plant Cell, 22, 594-605.

Nieto C, López-Salmerón V, Davière J-M, Prat S. 2015. ELF3-PIF4 interaction regulates plant growth independently of the evening complex. Current Biology, 25, 187-193.

Oakenfull R J, Davis S J. 2017. Shining a light on the Arabidopsis circadian clock. Plant, Cell & Environment, 40, 2571-2585.

Pertea M, Pertea G M, Antonescu C M, Chang T-C, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33, 290-295.

Rao K P, Vani G, Kumar K, Sinha A K. 2009. Rhythmic expression of mitogen activated protein kinase activity in rice. Molecules and Cells, 28, 417-422.

Romanowski A, Schlaen R G, Perez‐Santangelo S, Mancini E, Yanovsky M J. 2020. Global transcriptome analysis reveals circadian control of splicing events in Arabidopsis thaliana. The Plant Journal, 103, 889-902.

Ruan Y L. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review in Plant Biology, 65, 33-67.

Sanchez S E, Petrillo E, Beckwith E J, Zhang X, Rugnone M L, Hernando C E, Cuevas J C, Godoy Herz M A, Depetris-Chauvin A, Simpson C G. 2010. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature, 468, 112-116.

Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré I A, Coupland G. 1998. The late elongated hypocotyl Mutation of Arabidopsis Disrupts Circadian Rhythms and the Photoperiodic Control of Flowering. Cell, 93, 1219-1229.

Schlaen R G, Mancini E, Sanchez S E, Perez-Santángelo S, Rugnone M L, Simpson C G, Brown J W, Zhang X, Chernomoretz A, Yanovsky M J. 2015. The spliceosome assembly factor GEMIN2 attenuates the effects of temperature on alternative splicing and circadian rhythms. Proceedings of the National Academy of Sciences, 112, 9382-9387.

Schöning J C, Streitner C, Meyer I M, Gao Y, Staiger D. 2008. Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research, 36, 6977-6987.

Seki M, Ohara T, Hearn T J, Frank A, da Silva V C H, Caldana C, Webb A A R, Satake A. 2017. Adjustment of the Arabidopsis circadian oscillator by sugar signalling dictates the regulation of starch metabolism. Scientific Reports, 7, 8305.

Shah D, Sajjad N, Ali R, Nazir N, Hassan S, Shah S. 2019. Chapter 16 - Sugar Regulates Plant Growth and Development Under In Vitro Conditions. In: Khan M I R, Reddy P S, Ferrante A, Khan N A eds., Plant Signaling Molecules. Woodhead Publishing. pp. 257-268.

Shen S, Park J W, Lu Z-x, Lin L, Henry M D, Wu Y N, Zhou Q, Xing Y. 2014. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proceedings of the National Academy of Sciences, 111, E5593-E5601.

Shi J, Zhao X Q, Niu Y N, Chen X J, Ren X W. 2022. Brassinosteroid Affects the Elongation of Mesocotyl and Coleoptile in Zea mays L. by Regulating the Network of Circadian Rhythm under Severe Stress. Russian Journal of Plant Physiology, 69, 90.

Shim J S, Kubota A, Imaizumi T. 2017. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiology, 173, 5-15.

Smith A M, Stitt M. 2007. Coordination of carbon supply and plant growth. Plant, Cell & Environment, 30, 1126-1149.

Staiger D, Green R. 2011. RNA-based regulation in the plant circadian clock. Trends in Plant Science, 16, 517-523.

Sweetlove L J, Beard K F, Nunes-Nesi A, Fernie A R, Ratcliffe R G. 2010. Not just a circle: flux modes in the plant TCA cycle. Trends in Plant Science, 15, 462-470.

Thaben P F, Westermark P O. 2014. Detecting rhythms in time series with RAIN. Journal of Biological Rhythms, 29, 391-400.

Waheeda K, Kitchel H, Wang Q, Chiu P L. 2023. Molecular mechanism of Rubisco activase: Dynamic assembly and Rubisco remodeling. Front Mol Biosci, 10, 1125922.

Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B-S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A P, Batley J, Kim J-S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S-J, Choi S-R, Lee T-H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z, The Brassica rapa Genome Sequencing Project C. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 43, 1035-1039.

Wang X, Wu F, Xie Q, Wang H, Wang Y, Yue Y, Gahura O, Ma S, Liu L, Cao Y. 2012. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. The Plant Cell, 24, 3278-3295.

Wang Z-Y, Tobin E M. 1998. Constitutive Expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) Gene Disrupts Circadian Rhythms and Suppresses Its Own Expression. Cell, 93, 1207-1217.

Wu G, Anafi R C, Hughes M E, Kornacker K, Hogenesch J B. 2016. MetaCycle: an integrated R package to evaluate periodicity in large scale data. Bioinformatics, 32, 3351-3353.

Yang Y, Li Y, Sancar A, Oztas O. 2020. The circadian clock shapes the Arabidopsis transcriptome by regulating alternative splicing and alternative polyadenylation. Journal of Biological Chemistry, 295, 7608-7619.

Zhang C, Xie Q, Anderson R G, Ng G, Seitz N C, Peterson T, McClung C R, McDowell J M, Kong D, Kwak J M. 2013. Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathogens, 9, e1003370.

Zhang M, Zhang S. 2022. Mitogen‐activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology, 64, 301-341. 

No related articles found!
No Suggested Reading articles found!