Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 1092-1107    DOI: 10.1016/j.jia.2024.07.046
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Mitotic pollen abnormalities are linked to Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

Xiaochun Wei1, 2*, Yuanlin Zhang1, 2*, Yanyan Zhao1, Weiwei Chen2, Ujjal Kumar Nath3, Shuangjuan Yang1, Henan Su1, Zhiyong Wang1, Wenjing Zhang1, Baoming Tian2, Fang Wei1, 2#, Yuxiang Yuan1#, Xiaowei Zhang1, 2#

1 Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

2 School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China

3 Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh

 Highlights 
Nuclear degradation occurred in the late mononuclear stage of pollen development, and tapetal cells began to abnormally increase and vacuolate from the tetrad stage.
Genes related to cytochrome c, programmed cell death and genes related to peroxisome and autophagy were up-regulated in different developmental stages of Ogura cytoplasmic male sterility (CMS) line.
Mitochondrial gene orf138 mutation stimulated programmed cell death (PCD) in tapetal cells, resulting in abnormal pollen development.
Nuclear dispersion and autophagy occured in the late stage of pollen development, which led to the inability of Chinese cabbage Ogura CMS line to produce functional pollen and male sterility.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

Ogura细胞质雄性不育(Ogura CMS)最初在野生萝卜中被鉴定,其特征为花粉完全败育。但Ogura CMS在大白菜中的分子机制尚不清楚。细胞学分析证实,细胞核降解发生在花粉发育的单核后期,在三核期几乎消失,而绒毡层细胞从四分体时期开始异常增大并出现空泡化。花粉壁存在严重的发育缺陷。在花粉发育早期,与细胞色素c和程序性细胞死亡(PCD)相关的基因在Ogura CMS系中上调表达。相反,与花粉壁有丝分裂相关的基因表达下调。在花粉发育后期,Ogura CMS系中过氧化物酶体和自噬相关基因上调表达。线粒体orf138基因突变刺激绒毡层细胞PCD过程,导致其内容物异常增大和降解,直至三核期绒毡层细胞空泡化。由于绒毡层缺陷,其不能为小孢子提供足够的孢粉素和营养物质,从而导致花粉壁发育异常和小孢子有丝分裂异常。综上所述,核弥散与自噬发生在花粉发育后期导致大白菜Ogura CMS系不能产生功能性花粉,表现出雄性不育。



Abstract  

Ogura cytoplasmic male sterility (Ogura CMS) was first identified in wild radish (Raphanus sativus) and resulted in complete pollen abortion.  However, the molecular mechanism of Ogura CMS in Chinese cabbage remains unclear.  A cytological analysis confirmed nuclear degradation during the late uninucleate stage of pollen development, which diminished by the tricellular stage.  Concurrently, tapetal cells exhibited abnormal enlargement and vacuolation starting from the tetrad stage.  Serious developmental defects were observed in the pollen wall.  During early pollen development, genes associated with cytochrome c and programmed cell death (PCD) were upregulated in the Ogura CMS line, while genes involved in pollen wall mitosis were downregulated.  Conversely, at the late stage of pollen development, peroxisome and autophagy-related genes in the Ogura CMS line were upregulated.  The mitochondrial orf138 gene mutation triggered the PCD process in tapetal cells, leading to their abnormal enlargement and the degradation of their contents, eventually resulting in vacuolation at the tricellular stage.  These tapetal defects hindered the provision of adequate sporopollenin and nutrients to the microspores, consequently leading to abnormal pollen wall development and abnormal mitosis in the microspores.  Ultimately, nuclear dispersion commenced during the late uninucleate stage, and autophagy occurred in the late stage of pollen development.  Consequently, the plant could not produce functional pollen, resulting in male sterility in Chinese cabbage.  Studies of Ogura CMS can promote the production and application of male sterile materials and enrich male sterile resources, which is of great significance for hybrid breeding.


Keywords:  Ogura CMS       Chinese cabbage        cytology        transcriptome        PCD        pollen abortion  
Received: 30 October 2023   Accepted: 08 July 2024
Fund: 
This work was supported by the China Agricultural Research System (CARS-23-G15), the Innovation Team of Henan Academy of Agricultural Sciences, China (2024TD06), the Autonomous Innovation Project of Henan Academy of Agricultural Sciences, China (2024ZC034), the Joint Research on Agricultural Variety Improvement of Henan Province, China (2022010504), and the Key Research & Development Project of Henan Province, China (221111110100).
About author:  #Correspondence Fang Wei, E-mail: fangwei@zzu.edu.cn; Yuxiang Yuan, E-mail: yuxiangyuan126@126.com; Xiaowei Zhang, E-mail: xiaowei5737@163.com *These authors contributed equally to this study.

Cite this article: 

Xiaochun Wei, Yuanlin Zhang, Yanyan Zhao, Weiwei Chen, Ujjal Kumar Nath, Shuangjuan Yang, Henan Su, Zhiyong Wang, Wenjing Zhang, Baoming Tian, Fang Wei, Yuxiang Yuan, Xiaowei Zhang. 2025. Mitotic pollen abnormalities are linked to Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Journal of Integrative Agriculture, 24(3): 1092-1107.

Avin-Wittenberg T. 2019. Autophagy and its role in plant abiotic stress management. Plant Cell and Environment42, 1045–1053.

Boeckmann B, Bairoch A, Apweiler R, Blatter M C, Estreicher A, Gasteiger E, Martin M J, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M. 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research31, 365–370.

Chang Z Y, Jin M N, Yan W, Chen H, Qiu S J, Fu S, Xia J X, Liu Y C, Chen Z F, Wu J X, Tang X Y. 2018. The ATP-binding cassette (ABC) transporter OsABCG3 is essential for pollen development in rice. Rice (NY), 11, 58.

Deng Y, Liang L, Sun X, Jia X, Gu C, Su J. 2018. Ultrastructural abnormalities in pollen and anther wall development may lead to low pollen viability in jasmine (Jasminum sambac (L.) Aiton, Oleaceae). South African Journal of Botany114, 69–77.

Dong X S, Kim W K, Lim Y P, Kim Y K, Hur Y. 2013. Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes. Plant Science199–200, 7–17.

Du K, Xiao Y Y, Liu Q E, Wu X Y, Jiang J J, Wu J, Fang Y J, Xiang Y, Wang Y P. 2019. Abnormal tapetum development and energy metabolism associated with sterility in SaNa-1A CMS of Brassica napus L. Plant Cell Reports38, 545–558.

Duroc Y, Gaillard C, Hiard S, Defrance M C, Pelletier G, Budar F. 2005. Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie87, 1089–1100.

Gaborieau L, Brown G G, Mireau H. 2016. The propensity of pentatricopeptide repeat genes to evolve into restorers of cytoplasmic male sterility. Frontiers in Plant Science7, 1816.

Goldberg R B, Beals T P, Sanders P M. 1993. Anther development: Basic principles and practical applications. Plant Cell5, 1217–1229.

González-Melendi P, Uyttewaal M, Morcillo C N, Hernández Mora J R, Fajardo S, Budar F, Lucas M M. 2008. A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). Journal of Experimental Botany59, 827–838.

Goring D R. 2017. Exocyst, exosomes, and autophagy in the regulation of Brassicaceae pollen–stigma interactions. Journal of Experimental Botany69, 69–78.

Han F Q, Zhang X L, Liu Y X, Liu Y M, Zhao H, Li Z S. 2024. One-step creation of CMS lines using a BoCENH3-based haploid induction system in Brassica crop. Nature Plants10, 581–586.

Hanamata S, Sawada J, Toh B, Ono S, Ogawa K, Fukunaga T, Nonomura K I, Kurusu T, Kuchitsu K. 2019. Monitoring autophagy in rice tapetal cells during pollen maturation. Plant Biotechnol (Tokyo), 36, 99–105.

Harris M A, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin G M, Blake J A, Bult C, Dolan M, Drabkin H, Eppig J T, Hill D P, Ni L, Ringwald M, et al. 2004. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research32, D258-D261.

Hsieh K, Huang A H. 2007. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. The Plant Cell19, 582–596.

Hu L J, Zhang X W, Yuan Y X, Wang Z Y, Yang S J, Li R N, Ujjal K N, Zhao Y Y, Tian B M, Shi G Y, Xie Z Q, Wei F, Wei X C. 2021. Comparative transcriptome identifies gene expression networks regulating developmental pollen abortion in Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa ssp. pekinensis). Horticulturae7, 157.

Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research28, 27–30.

Kim S, Lim H, Park S, Cho K H, Sung S K, Oh D G, Kim K T. 2007. Identification of a novel mitochondrial genome type and development of molecular markers for cytoplasm classification in radish (Raphanus sativus L.). Theoretical and Applied Genetics115, 1137–1145.

Lan G. 2012. Genetics and molecular biology on cytoplasmic male sterile line 301A in Brassica napus L. MSc thesis, Northwest A&F University, China. (in Chinese)

Li P, Nijhawan D, Budihardjo I, Srinivasula S M, Ahmad M, Alnemri E S, Wang X. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell91, 479–489.

Lin S, Miao Y J, Su S W, Xu J, Jin L B, Sun D, Peng R Y, Huang L, Cao J S. 2019. Comprehensive analysis of Ogura cytoplasmic male sterility-related genes in turnip (Brassica rapa ssp. rapifera) using RNA sequencing analysis and bioinformatics. PLoS ONE14, e0218029.

Liu F H, Yang F. 2020. Male sterility induction and evolution of cytoplasmic male sterility related atp9 gene from Boehmeria nivea (L.) Gaudich. Industrial Crops and Products, 156, 112861.

Liu Z H, Li S, Li W, Liu Q, Zhang L L, Song X Y. 2020. Comparative transcriptome analysis indicates that a core transcriptional network mediates isonuclear alloplasmic male sterility in wheat (Triticum aestivum L.). BMC Plant Biology20, 10.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods25, 402–408.

Llases M E, Lisa M N, Morgada M N, Giannini E, Alzari P M, Vila A J. 2020. Arabidopsis thaliana Hcc1 is a Sco-like metallochaperone for CuA assembly in Cytochrome c Oxidase. FEBS Journal287, 749–762.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Luo X D, Dai L F, Wang S B, Wolukau J N, Jahn M, Chen J F. 2006. Male gamete development and early tapetal degeneration in cytoplasmic male-sterile pepper investigated by meiotic, anatomical and ultrastructural analyses. Plant Breeding125, 395–399.

Ma X F, Wu Y, Zhang G F. 2021. Formation pattern and regulatory mechanisms of pollen wall in ArabidopsisJournal of Plant Physiology260, 153388.

Mokas S, Mills J R, Garreau C, Fournier M J, Robert F, Arya P, Kaufman R J, Pelletier J, Mazroui R. 2009. Uncoupling stress granule assembly and translation initiation inhibition. Molecular Biology of the Cell, 20, 2673–2683.

Moser M, Kirkpatrick A, Groves N R, Meier I. 2020. LINC-complex mediated positioning of the vegetative nucleus is involved in calcium and ROS signaling in Arabidopsis pollen tubes. Nucleus11, 149–163.

Nie Z X, Chen J Y, Song Y P, Fu H F, Wang H, Niu Q L, Zhu W M. 2021. Comparative transcriptome analysis of the anthers from the cytoplasmic male-sterile pepper line HZ1A and its maintainer line HZ1B. Horticulturae7, 580.

Niu Y, Wu L M, Li Y H, Huang H L, Qian M C, Sun W, Zhu H, Xu Y F, Fan Y H, Mahmood U, Xu B B, Zhang K, Qu C M, Li J N, Lu K. 2020. Deciphering the transcriptional regulatory networks that control size, color, and oil content in Brassica rapa seeds. Biotechnol Biofuels13, 90.

Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards K J, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R. 2000. A simple sequence repeat-based linkage map of barley. Genetics156, 1997–2005.

Sun R F, Zhang S J, Zhang S F, Li F. 2006. Research on creation of purple Chinese cabbage germplasm. Horticultural Plant Journal33, 1032.

Takatsuka A, Kazama T, Toriyama K. 2021. Cytoplasmic male sterility-associated mitochondrial gene orf312 derived from rice (Oryza sativa L.) cultivar Tadukan. Rice (NY), 14, 46.

Tatusov R L, Fedorova N D, Jackson J D, Jacobs A R, Kiryutin B, Koonin E V, Krylov D M, Mazumder R, Mekhedov S L, Nikolskaya A N, Rao B S, Smirnov S, Sverdlov A V, Vasudevan S, Wolf Y I, Yin J J, Natale D A. 2003. The COG database: An updated version includes eukaryotes. BMC Bioinformatics4, 41.

Wang B Q, Farooq Z, Chu L, Liu J, Wang H D, Guo J, Tu J X, Ma C Z, Dai C, Wen J, Shen J X, Fu T D, Yi B. 2021. High-generation near-isogenic lines combined with multi-omics to study the mechanism of polima cytoplasmic male sterility. BMC Plant Biology21, 130.

Wang C D, Lezhneva L, Arnal N, Quadrado M, Mireau H. 2021. The radish Ogura fertility restorer impedes translation elongation along its cognate CMS-causing mRNA. Proceedings of the National Academy of Sciences of the United States of America118, e2105274118.

Wei C H, Zhang R M, Yue Z, Yan X, Cheng D H, Li J Y, Li H, Zhang Y, Ma J X, Yang J Q, Zhang X. 2021. The impaired biosynthetic networks in defective tapetum lead to male sterility in watermelon. Journal of Proteomics243, 104241.

Xiao S L, Zang J, Pei Y R, Liu J, Liu J, Song W, Shi Z, Su A G, Zhao J R, Chen H B. 2020. Activation of mitochondrial orf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize. Molecular Plant13, 1270–1283.

Yamagishi H, Jikuya M, Okushiro K, Hashimoto A, Fukunaga A, Takenaka M, Terachi T. 2021. A single nucleotide substitution in the coding region of Ogura male sterile gene, orf138, determines effectiveness of a fertility restorer gene, Rfo, in radish. Molecular Genetics and Genomics296, 705–717.

Yang X T, Ye J L, Zhang L L, Song X Y. 2020. Blocked synthesis of sporopollenin and jasmonic acid leads to pollen wall defects and anther indehiscence in genic male sterile wheat line 4110S at high temperatures. Functional & Integrative Genomics20, 383–396.

Yi J, Moon S, Lee Y S, Zhu L, Liang W Q, Zhang D B, Jung K H, An G. 2016. Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration. Plant Physiology and Biochemistry170, 1611–1623.

Wu T Z, Hu E Q, Xu S B, Chen M J, Guo P F, Dai Z H, Feng T Z, Zhou L, Tang W L, Zhan L, Fu X C, Liu S S, Bo X C, Yu G C. 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation2, 100141.

Zajączkowska U, Denisow B, Łotocka B, Dołkin-Lewko A, Rakoczy-Trojanowska M. 2021. Spikelet movements, anther extrusion and pollen production in wheat cultivars with contrasting tendencies to cleistogamy. BMC Plant Biology21, 136.

Zhang S L, Duan X, Yan X L, Yuan X X, Zhang D F, Liu Y M, Wang Y H, Shen S X, Xuan S X, Zhao J J, Chen X P, Luo S X, Gu A X. 2024. Multispectral detection of dietary fiber content in Chinese cabbage leaves across different growth periods. Food Chemistry447, 138895.

[1] Meixue Sun, Tong Li, Yingjie Liu, Kenneth Wilson, Xingyu Chen, Robert I. Graham, Xianming Yang, Guangwei Ren, Pengjun Xu. A dicistrovirus increases pupal mortality in Spodoptera frugiperda by suppressing protease activity and inhibiting larval diet consumption[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2723-2734.
[2] Qian Wang, Huimin Cao, Jingcheng Wang, Zirong Gu, Qiuyun Lin, Zeyan Zhang, Xueying Zhao, Wei Gao, Huijun Zhu, Hubin Yan, Jianjun Yan, Qingting Hao, Yaowen Zhang. Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.)[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2571-2588.
[3] Hengwei Yu, Zhimei Yang, Jianfang Wang, Huaxuan Li, Xuefeng Li, Entang Liang, Chugang Mei, Linsen Zan. Identification of key genes and metabolites involved in meat quality performance in Qinchuan cattle by WGCNA[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3923-3937.
[4] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[5] WU Zhe, YANG Xuan, ZHAO Yu-xuan, JIA Li. Identifying candidate genes involved in trichome formation on carrot stems by transcriptome profiling and resequencing [J]. >Journal of Integrative Agriculture, 2022, 21(12): 3589-3599.
No Suggested Reading articles found!