Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (1): 116-121    DOI: 10.1016/S1671-2927(00)8517
ANIMAL SCIENCE · VETERINARY SCIENCE Advanced Online Publication | Current Issue | Archive | Adv Search |
Detection and Characterization of β-Lactam Resistance in Haemophilus parasuis Strains from Pigs in South China
 GUO Li-li, ZHANG Jian-min, XU Cheng-gang, REN Tao, ZHANG Bin, CHEN Ji-dang , LIAO Ming
1.Key Laboratory of Animal Disease Control and Prevention, Ministry of Agriculture/Key Laboratory of Zoonoses Prevention and Control of Guangdong, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  To characterize the β-lactam resistance in veterinary clinical isolates of Haemophilus parasuis, 115 isolates were examined for the β-lactam resistance, the possession of β-lactamase, and the presence of β-lactamase genes. The genetic relationship among isolates was evaluated by pulsed-field gel electrophoresis (PFGE). Overall, the commonly detected resistance phenotypes were resistant to ampicillin (26.09%), penicillin (22.61%), amoxicillin (21.74%), cefazolin (14.78%), cefaclor (12.17%), and cefotaxime (6.96%). These strains showed high minimal inhibitory concentration (MICs) to oxacillin. 20.87% strains produced β-lactamase, and 4.35% strains showed extended-spectrum b-lactamase (ESBL) phenotype. Moreover, 19 strains harboured bla genes including TEM-1 (n=5), TEM-116 (n=10), and ROB-1 (n=5). Significantly, one strain possessed both TEM-1 and ROB-1, and displayed resistance to cefotaxime (MIC=8 mg L-1). The epidemiological analysis of PFGE revealed high genetic diversity among bla-positive isolates. This work shows that TEM- and ROB-type β-lactamases are prevalent in H. parasuis isolates in China.

Abstract  To characterize the β-lactam resistance in veterinary clinical isolates of Haemophilus parasuis, 115 isolates were examined for the β-lactam resistance, the possession of β-lactamase, and the presence of β-lactamase genes. The genetic relationship among isolates was evaluated by pulsed-field gel electrophoresis (PFGE). Overall, the commonly detected resistance phenotypes were resistant to ampicillin (26.09%), penicillin (22.61%), amoxicillin (21.74%), cefazolin (14.78%), cefaclor (12.17%), and cefotaxime (6.96%). These strains showed high minimal inhibitory concentration (MICs) to oxacillin. 20.87% strains produced β-lactamase, and 4.35% strains showed extended-spectrum b-lactamase (ESBL) phenotype. Moreover, 19 strains harboured bla genes including TEM-1 (n=5), TEM-116 (n=10), and ROB-1 (n=5). Significantly, one strain possessed both TEM-1 and ROB-1, and displayed resistance to cefotaxime (MIC=8 mg L-1). The epidemiological analysis of PFGE revealed high genetic diversity among bla-positive isolates. This work shows that TEM- and ROB-type β-lactamases are prevalent in H. parasuis isolates in China.
Keywords:  Haemophilus parasuis      β-lactamase genes      resistance      pulsed-field gel electrophoresis  
Received: 03 December 2010   Accepted:
Fund: 

This work was supported by the Program for New Century Excellent Talents in University, China (NCET-06-0752), and the Guangdong Technology Planning Committee, China (2006B0152 and 2009A0201006).

Corresponding Authors:  Correspondence LIAO Ming, Tel: +86-20-85280240, Fax: +86-20-85285282, E-mail: mliao@scau.edu.cn     E-mail:  mliao@scau.edu.cn
About author:  GUO Li-li, E-mail: gll2004203746@126.com

Cite this article: 

GUO Li-li, ZHANG Jian-min, XU Cheng-gang, REN Tao, ZHANG Bin, CHEN Ji-dang , LIAO Ming. 2012. Detection and Characterization of β-Lactam Resistance in Haemophilus parasuis Strains from Pigs in South China. Journal of Integrative Agriculture, 12(1): 116-121.

[1]Aarestrup F M, Seyfarth A M, Angen O. 2004. Antimicrobial susceptibility of Haemophilus parasuis and Histophilus somni from pigs and cattle in Denmark. Veterinary Microbiology, 101, 143-146.

[2]Ahmed A M, Furuta K, Shimomura K, Kasama Y, Shimamoto T. 2006. Genetic characterization of multidrug resistance in Shigella spp. from Japan. Journal of Medical Microbiology, 55, 1685-1691.

[3]Aragon V, Cerda-Cuellar M, Fraile L, Mombarg M, Nofrarias M, Olvera A, Sibila M, Solanes D, Segales J. 2010. Correlation between clinico-pathological outcome and typing of Haemophilus parasuis field strains. Veterinary Microbiology, 142, 387-393.

[4]Cai X, Chen H, Blackall P J, Yin Z, Wang L, Liu Z, Jin M. 2005. Serological characterization of Haemophilus parasuis isolates from China. Veterinary Microbiology, 111, 231-236.

[5]National Committee for Clinical Laboratory Standards. 2002. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. Approved Standard M31-A2. 2nd ed. Wayne, PA, USA. Clinical and Laboratory Standards Institute. 2009. Performance Standards for Antimicrobial Susceptibility Testing. M100-S19.

[6]Wayne, PA, USA. de la Fuente A J M, Tucker A W, Navas J, Blanco M, Morris S J, Gutierrez-Martin C B. 2007. Antimicrobial susceptibility patterns of Haemophilus parasuis from pigs in the United Kingdom and Spain. Veterinary Microbiology, 120, 184-191.

[7]Hu G Z, Chen H Y, Si H B, Deng L X, Wei Z Y, Yuan L, Kuang X H. 2008. Phenotypic and molecular characterization of TEM-116 extended-spectrum betalactamase produced by a Shigella flexneri clinical isolate from chickens. Federation of European Materials Societies Microbiology Letters, 279, 162-166.

[8]Kang M, Zhou R, Liu L, Langford P R, Chen H. 2009. Analysis of an Actinobacillus pleuropneumoniae multi-resistance plasmid, pHB0503. Plasmid, 61, 135-139.

[9]Li J X, Jiang P, Wang Y, Li Y F, Chen W, Wang X W, Li P. 2009. Genotyping of Haemophilus parasuis from diseased pigs in China and prevalence of two coexisting virus pathogens. Preventive Veterinary Medicine, 91, 274-279.

[10]Li X Z, Mehrotra M, Ghimire S, Adewoye L. 2007. β-Lactam resistance and β-lactamases in bacteria of animal origin. Veterinary Microbiology, 121, 197-214.

[11]Liao W, Jiang J, Xu Y, Yi J, Chen T, Su X, Pan S, Wei X, Li Y. 2010. Survey for beta-lactamase among bacterial isolates from Guangzhou, China hospitals between 2005-2006.

[12]The Journal of Antibiotics (Tokyo), 63, 225-229.

[13]Oliveira S, Galina L, Pijoan C. 2001. Development of a PCR test to diagnose Haemophilus parasuis infections. Journal of Veterinary Diagnostic Investigation, 13, 495-501.

[14]Perez-Perez F J, Hanson N D. 2002. Detection of plasmidmediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical Microbiology, 40, 2153-2162.

[15]San Millan A, Escudero J A, Catalan A, Nieto S, Farelo F, Gibert M, Moreno M A, Dominguez L, Gonzalez-Zorn B. 2007. β-Lactam resistance in Haemophilus parasuis is mediated by plasmid pB1000 bearing blaROB-1. Antimicrobial Agents and Chemotherapy, 51, 2260-2264.

[16]Sun Y, Zeng Z, Chen S, Ma J, He L, Liu Y, Deng Y, Lei T, Zhao J, Liu J H. 2010. High prevalence of bla (CTX-M) extended-spectrum beta-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, 16, 1475-1481.

[17]Sutton L D, Biedenbach D J, Yen A, Jones R N. 1995. Development, characterization, and initial evaluations of S1. A new chromogenic cephalosporin for β-lactamase detection. Diagnostic Microbiology and Infectious Disease, 21, 1-8.

[18]Tang X B, Zhao Z Q, Hu J Y, Wu B, Cai X W, He Q G, Chen H C. 2009. Isolation, antimicrobial resistance, and virulence genes of Pasteurella multocida strains from swine in China. Journal of Clinical Microbiology, 47, 951-958.

[19]Touati A, Achour W, Ben Hassen A. 2009. Phenotypic and molecular characterization of β-lactam resistance and capsular typing of colonizing Haemophilus influenzae strains isolated from neutropenic patients in Tunisia. Pathologie Biologie (Paris), 57, 353-357.

[20]Wissing A, Nicolet J, Boerlin P. 2001. The current antimicrobial resistance situation in Swiss veterinary medicine. Schweizer Archiv für Tierheilkunde, 143, 503-510.

[21]Yuan L, Liu J H, Hu G Z, Pan Y S, Liu Z M, Mo J, Wei Y J. 2009. Molecular characterization of extended-spectrum β-lactamase-producing Escherichia coli isolates from chickens in Henan Province, China. Journal of Medical Microbiology, 58, 1449-1453.

[22]Zhou X, Xu X, Zhao Y, Chen P, Zhang X, Chen H, Cai X. 2010. Distribution of antimicrobial resistance among different serovars of Haemophilus parasuis isolates. Veterinary Microbiology, 141, 168-173.

[23]Zuo B, Liu Z H, Wang H P, Yang Y M, Chen J L, Ye H F. 2006. Genotype of TEM-and SHV-type beta-lactamase producing Klebsiella pneumoniae in Guangzhou area. National Medical Journal of China, 86, 2928-2932. (in Chinese)
[1] HUANG Hong-hao, LU Yi-xing, WU Su-juan, MA Zhen-bao, ZENG Dong-ping, ZENG Zhen-ling. Identification of blaIMI-mediated carbapenem-resistant Enterobacter from a duck farm in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2500-2508.
[2] Tiago SILVA, Ying NIU, Tyler TOWLES, Sebe BROWN, Graham P. HEAD, Wade WALKER, Fangneng HUANG. Selection, effective dominance, and completeness of Cry1A.105/Cry2Ab2 dual-protein resistance in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2151-2161.
[3] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[4] ZHANG Yan, TIAN Tian, ZHANG Kun, ZHANG You-jun, WU Qing-jun, XIE Wen, GUO Zhao-jiang, WANG Shao-li.

Lack of fitness cost and inheritance of resistance to abamectin based on the establishment of a near-isogenic strain of Tetranychus urticae [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1809-1819.

[5] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[6] DONG Xiu-chun, QIAN Tai-feng, CHU Jin-peng, ZHANG Xiu, LIU Yun-jing, DAI Xing-long, HE Ming-rong. Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1351-1365.
[7] LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1291-1307.
[8] Ambreen LEGHARI, Shakeel Ahmed LAKHO, Faiz Muhammad KHAND, Khaliq ur Rehman BHUTTO, Sameen Qayoom LONE, Muhammad Tahir ALEEM, Iqra BANO, Muhammad Ali CHANDIO, Jan Muhammad SHAH, LIN Hui-xing, FAN Hong-jie. Molecular epidemiology, characterization of virulence factors and antibiotic-resistance profile of Streptococcus agalactiae isolated from dairy farms in China and Pakistan[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1514-1528.
[9] GAO Xian-xian, TANG Ya-ling, SHI Qing-yao, WEI Yu-shu, WANG Xiao-xue, SHAN Wei-xing, QIANG Xiao-yu. Vacuolar processing enzyme positively modulates plant resistance and cell death in response to Phytophthora parasitica infection[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1424-1433.
[10] SONG Zhong-ping, ZUO Yuan-yuan, XIANG Qin, LI Wen-jia, LI Jian, LIU Gang, DAI Shou-fen, YAN Ze-hong.

Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1258-1265.

[11] Irshad AHMAD, Maksat BATYRBEK, Khushnuma IKRAM, Shakeel AHMAD, Muhammad KAMRAN, Misbah, Raham Sher KHAN, HOU Fu-jiang, HAN Qing-fang.

Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density [J]. >Journal of Integrative Agriculture, 2023, 22(2): 417-433.

[12] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[13] HU Wen-jing, FU Lu-ping, GAO De-rong, LI Dong-sheng, LIAO Sen, LU Cheng-bin. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15[J]. >Journal of Integrative Agriculture, 2023, 22(2): 360-370.
[14] SHAN Yan-fei, LI Meng-yan, WANG Run-ze, LI Xiao-gang, LIN Jing, LI Jia-ming, ZHAO Ke-jiao, WU Jun. Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears[J]. >Journal of Integrative Agriculture, 2023, 22(1): 120-138.
[15] Carlos Kwesi TETTEY, YAN Zhi-yong, MA Hua-yu, ZHAO Mei-sheng, GENG Chao, TIAN Yan-ping, LI Xiang-dong . Tomato mottle mosaic virus: characterization, resistance gene effectiveness, and quintuplex RT-PCR detection system[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2641-2651.
No Suggested Reading articles found!