Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (6): 2240-2250    DOI: 10.1016/j.jia.2025.02.015
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
QTL detection and candidate gene analysis of the anthracnose resistance locus in tea plant (Camellia sinensis)

Chenyu Zhang1*, Hongli Li2*, Piao Mei1, Yuanyuan Ye1, Dingding Liu1, Yang Gong1, Haoran Liu1, Mingzhe Yao1#, Chunlei Ma1#

1 Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

2 Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China

 Highlights 
Anthracnose resistance QTLs in tea plants were investigated using the BJG×LJ43 population.
Two anthracnose resistance QTLs, qARChr1 and qARChr13, were identified through BSA-seq analysis.
A nuclear-localized ERF transcription factor (CsERF105) within the qARChr1 locus was found to positively regulate anthracnose resistance.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

炭疽病是一种由刺盘孢属(Colletotrichum)引起的重要病害,对茶树(Camellia sinensis)的产量和经济价值有着显著影响。然而,关于茶树炭疽病抗性的遗传机理目前鲜有报道。前期田间调查发现茶树‘龙井43’ב白鸡冠’杂交F1代对炭疽病存在明显抗性差异。因此,本研究以‘龙井43’ב白鸡冠’杂交群体为试材,对茶树炭疽病抗性遗传位点进行了探究。基于连锁分析发现一个主效QTL(qAR-12.4)在两年分别可以解释10.8%和12.7%的表型变异;进一步通过混池测序定位了两个基因组区段与炭疽病抗性具有很强的相关性:位于1号染色体的qARChr113号染色体的qARChr13。对亲本‘龙井43’和‘白鸡冠’在接种山茶炭疽菌0、24和48小时后的叶片分别进行转录组测序,结果显示位于qARChr1区段内的核定位ERF转录因子(CsERF105)表达水平在‘白鸡冠’叶片接种后逐渐提高,而在‘龙井43’中则没有该趋势。通过对‘白鸡冠’进行CsERF105反义寡核苷酸处理,发现其炭疽病抗性显著降低,表明CsERF105可能是一个影响炭疽病抗性的正调控因子。综上,本研究初步明确了茶树抗炭疽病的遗传位点,并为后续的分子育种目标提供了理论依据。



Abstract  

Anthracnose is a devastating disease caused by Colletotrichum that significantly affects the yield and economic value of the tea plant (Camellia sinensis).  However, few studies have addressed the genetic mechanism of anthracnose resistance (AR).  This study investigated the QTL associated with AR in a ‘Longjing 43’בBaijiguan’ (LJ43×BJG) population.  The field surveys conducted in this study led to the identification of several QTLs for AR on the linkage map.  One major QTL (qAR-12.4) accounted for 12% of the phenotypic variance explained over two years.  The BSA-seq results also revealed two genomic regions, qARChr1 on chromosome 1 and qARChr13 on chromosome 13, which showed strong correlations with AR.  Time-course RNA-seq was performed on LJ43 and BJG inoculated with anthracnose at 0, 24, and 48 hours to screen for candidate genes.  The results showed the gradual post-inoculation expression of a nuclear-localized ERF transcription factor (CsERF105) within the qARChr1 locus in BJG but not in LJ43.  The AR of BJG was significantly reduced after feeding with CsERF105-specific antisense oligonucleotides, suggesting that CsERF105 may be a positive regulator.  The findings of this study add to our general knowledge of the genetic factors involved in the tea plant’s AR and potential breeding targets.


Keywords:  Camellia sinensis       anthracnose        genetic map        CsERF105        disease resistance  
Received: 26 January 2024   Online: 17 February 2025   Accepted: 20 January 2025
Fund: 

This work was supported by Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding-Tea Plant, China (2021C02067-6), the National Key Research and Development Program of China (2021YFD1200200), the Fundamental Research Fund for Tea Research Institute of the Chinese Academy of Agricultural Sciences (1610212022009), and the Zhejiang Provincial Natural Science Foundation, China (Z24C160010) to Chunlei Ma.

About author:  Chenyu Zhang, E-mail: zhangchenyu@tricaas.com; Hongli Li, E-mail: lihongli900@126.com; #Correspondence Mingzhe Yao, E-mail: yaomz@tricaas.com; Chunlei Ma, E-mail: malei220@tricaas.com * These authors contributed equally to this study.

Cite this article: 

Chenyu Zhang, Hongli Li, Piao Mei, Yuanyuan Ye, Dingding Liu, Yang Gong, Haoran Liu, Mingzhe Yao, Chunlei Ma. 2025. QTL detection and candidate gene analysis of the anthracnose resistance locus in tea plant (Camellia sinensis). Journal of Integrative Agriculture, 24(6): 2240-2250.

Catinot J, Huang J, Huang P, Tseng M, Chen Y, Gu S, Lo W, Wang L, Chen Y, Zimmerli L. 2015. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate- and ethylene-responsive defence genes. PlantCell & Environment38, 2721–2734.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen S, Wang P, Kong W, Chai K, Zhang S, Yu J, Wang Y, Jiang M, Lei W, Chen X, Wang W, Gao Y, Qu S, Wang F, Wang Y, Zhang Q, Gu M, Fang K, Ma C, Sun W, et al. 2023. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensisNature Plants9, 1986–1999.

Guo M, Pan Y M, Dai Y L, Gao Z M. 2014. First report of brown blight disease caused by colletotrichum gloeosporioides on Camellia sinensis in Anhui Province, China. Plant Disease98, 284.

Hassan O, Kim S, Kim K, Chang T. 2023. First report of leaf anthracnose caused by Colletotrichum camelliae on tea plants (Camellia sinensis) in South Korea. Plant Disease107, 2881.

Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y, Yost H J. 2013. MMAPPR: Mutation mapping analysis pipeline for pooled RNA-seq. Genome Research23, 687–697.

Huang R, Wang J, Yao M, Ma C, Chen L. 2022. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. Horticulture Research9, uhab029.

Ikeda N, Amma S. 2004. Diallel analysis of resistance to anthracnose in tea (Camellia sinensis). Breeding Research6, 135–141.

Jeyaraj A, Elango T, Chen X, Zhuang J, Wang Y, Li X. 2023. Advances in understanding the mechanism of resistance to anthracnose and induced defence response in tea plants. Molecular Plant Pathology24, 1330–1346.

Jin J, Qu F, Huang H, Liu Q, Wei M, Zhou Y, Huang K, Cui Z, Chen J, Dai W, Zhu L, Yao M, Zhang Z, Chen L. 2023. Characterization of two O-methyltransferases involved in the biosynthesis of O-methylated catechins in tea plant. Nature Communications14, 5075.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Li H L, Zhou T L, Mao Y X, Huang H T, Cui H C, Zheng X X, Zhao Y. 2023. Isolation and identification of anthracnose pathogen from Xihu Longjing plantation and screening of its plant-derived fungicides. Journal of Tea Science43, 194–204. (in Chinese)

Liu Y, Chen S, Chen J, Wang J, Wei M, Tian X, Chen L, Ma J. 2023a. Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis). BMC Plant Biology23, 206.

Liu Y, Chen S, Jiang C, Liu H, Wang J, He W, Moon D, Chen J, Chen L, Ma J. 2023b. Combined QTL mapping, GWAS and transcriptomic analysis revealed a candidate gene associated with the timing of spring bud flush in tea plant (Camellia sinensis). Horticulture Research10, uhad149.

Lu M, Zhao Y, Feng Y, Tang X, Zhao W, Yu K, Pan Y, Wang Q, Cui J, Zhang M, Jin J, Wang J, Zhao M, Schwab W, Song C. 2012. 2,4-dihydroxybenzoic acid, a novel SA derivative, controls plant immunity via UGT95B17-Mediated glucosylation: A case study in Camellia sinensisAdvanced Science11, 2307051.

Lu Q, Wang Y, Li N, Ni D, Yang Y, Wang X. 2018. Differences in the characteristics and pathogenicity of Colletotrichum camelliae and C. fructicola isolated from the tea plant [Camellia sinensis (L.) O. Kuntze]. Frontiers in Microbiology9, 3060.

Lu X, Jiang W, Zhang L, Zhang F, Zhang F, Shen Q, Wang G, Tang K. 2013. AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annuaPLoS ONE8, e57657.

Orrock J M, Rathinasabapathi B, Spakes Richter B. 2020. Anthracnose in U.S. tea: pathogen characterization and susceptibility among six tea accessions. Plant Disease104, 1055–1059.

Ristaino J B, Madritch M, Trout C L, Parra G. 1998. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus PhytophthoraApplied and Environmental Microbiology64, 948–954.

Shi N N, Du Y X, Ruan H C, Yang X J, Dai Y L, Gan L, Chen F R. 2018. First report of Colletotrichum fructicola causing anthracnose on Camellia sinensis in Guangdong Province, China. Plant Disease102, 241.

Shi Y, Sheng Y, Cai Z, Yang R, Li Q, Li X, Li D, Guo X, Lu J, Ye J, Wang K, Zhang L, Liang Y, Zheng X. 2019. Involvement of salicylic acid in anthracnose infection in tea plants revealed by transcriptome profiling. International Journal of Molecular Sciences20, 2439.

Tan L, Wang L, Zhou B, Liu Q, Chen S, Sun D, Zou Y, Chen W, Li P, Tang Q. 2020. Comparative transcriptional analysis reveled genes related to short winter-dormancy regulation in Camellia sinensisPlant Growth Regulation92, 401–415.

Taniguchi F, Katsuyuki Y, Tanaka K, Ogino A. 2010. Identification of quantitative trait loci for resistance to anthracnose in the tea cultivar ‘Minamisayaka’ using an SSR-based linkage map. In: Proceedings of the 4th International Conference on 0-CHA(tea) Culture and Science. Japan.

Wang J, Liu L, Tang Q, Sun K, Zeng L, Wu Z. 2021. Evaluation and selection of suitable qRT-PCR reference genes for light responses in tea plant (Camellia sinensis). Scientia Horticulturae289, 110488.

Wang L, Wang Y, Cao H, Hao X, Zeng J, Yang Y, Wang X. 2016. Transcriptome analysis of an anthracnose-resistant tea plant cultivar reveals genes associated with resistance to Colletotrichum camelliaePLoS ONE11, e0148535.

Wang P, Yu J, Jin S, Chen S, Yue C, Wang W, Gao S, Cao H, Zheng Y, Gu M, Chen X, Sun Y, Guo Y, Yang J, Zhang X, Ye N. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research8, 107.

Wang S, Liu L, Mi X, Zhao S, An Y, Xia X, Guo R, Wei C. 2021. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. The Plant Journal106, 862–875.

Wang X, Feng H, Chang Y, Ma C, Wang L, Hao X, Li A l, Cheng H, Wang L, Cui P, Jin J, Wang X, Wei K, Ai C, Zhao S, Wu Z, Li Y, Liu B, Wang G D, Chen L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications11, 4447.

Wang Y, Hao X, Lu Q, Wang L, Qian W, Li N, Ding C, Wang X, Yang Y. 2018. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose. Horticulture Research5, 18.

Wang Y, Hao X, Wang L, Bin X, Wang X, Yang Y. 2016. Diverse colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China. Scientific Reports6, 35287.

Wei K, Wang L, Zhang Y, Ruan L, Li H, Wu L, Xu L, Zhang C, Zhou X, Cheng H, Edwards R. 2019. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. The Plant Journal97, 825–840.

Xia E, Zhang H, Sheng J, Li K, Zhang Q, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang J, Mao S, Jiao J, Zhang D, Zhao Y, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant10, 866–877.

Xu L, Tan L, Wang L, Qi G, Cheng H, Wei K. 2016. QTL analysis for anthracnose resistance in tea plant (Camellia sinensis). Journal of Tea Science36, 432–439. (in Chinese)

Yoshida K, Ogino A, Yamada K, Sonoda R. 2010. Induction of disease resistance in tea (Camellia sinensis L.) by plant activators. Japan Agricultural Research Quarterly44, 391–398.

Yoshida K, Takeda Y. 2006. Evaluation of anthracnose resistance among tea genetic resources by wound-inoculation assay. Japan Agricultural Research Quarterly40, 379–386.

Zang Z, Lv Y, Liu S, Yang W, Ci J, Ren X, Wang Z, Wu H, Ma W, Jiang L, Yang W. 2020. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicumFrontiers in Plant Science11, 850.

Zhang C, Liu H, Wang J, Li Y, Liu D, Ye Y, Huang R, Li S, Chen L, Chen J, Yao M, Ma C. 2023. A key mutation in magnesium chelatase I subunit leads to a chlorophyll-deficient mutant of tea (Camellia sinensis). Journal of Experimental Botany75, 935–946.

[1] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[2] MA Yu-xin, ZHOU Zhi-jun, CAO Hong-zhe, ZHOU Fan, SI He-long, ZANG Jin-ping, XING Ji-hong, ZHANG Kang, DONG Jin-gao. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3458-3473.
[3] GUO Ya-fei, LI Dai-li, QIU Hai-ji, ZHANG Xiao-liang, LIU Lin, ZHAO Jing-jing, JIANG De-yuan. Genome-wide association studies reveal the genetic basis of amino acid content variation in tea plants[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3364-3379.
No Suggested Reading articles found!