Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Trichoderma gamsii strain TC959 with comprehensive functions to effectively reduce seedling damping-off and promote growth of pepper by direct and indirect action mechanisms
WANG Heng-xu1, 2, HU Hao1, 2, ZHAO Tian-you1, 2, ZENG Zhao-qing1, ZHUANG Wen-ying1

1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
2 University of Chinese Academy of Sciences, Beijing 100049, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  木霉是广泛分布于自然界的重要真菌资源,其中少数种的部分菌株因具有直接和间接抑制植物病原真菌(以下简称“植病菌”)生长的功效,被研发为生物防治推广应用于农物病害的绿色防控。已有的相关报道主要侧重于木霉与植病菌之间的直接作用,较少涉及多重作用机制的探讨。本研究旨在探寻对辣椒苗期立枯病具有拮抗、促生及抗逆等综合防治能力的木霉菌株,揭示其多种作用机制并阐明其可利用价值。通过木霉与植病菌对峙培养和盆栽实验,利用激光共聚焦显微观察以及实时荧光定量PCR测定等方法筛选出一株具有较强拮抗植病菌能力和促进植物生长的盖姆斯木霉菌株TC959该菌株通过释放次级代谢产物、铁载体、几丁质酶和木聚糖酶,直接抑制植病菌生长;通过释放吲哚-3-乙酸和赤霉素促进植物生长;并定殖于植物根际,增加辣椒幼苗的叶绿素a/b比率和茉莉酸含量,增强植物抗性;同时激活植物诱导性系统抗性,从而提高防御相关基因(PDF1.2MYC2PR1PR4等)的表达量、抗氧化酶(多酚氧化酶、苯丙氨酸解氨酶和过氧化物酶)的活性以及生长激素(吲哚-3-乙酸和赤霉素)的含量,进而增强植物抗病性并改善生长状况。此外,菌株TC959具有耐受过氧化物和化学杀菌剂的优势,其菌丝体生长在含有1 × 10-4 mol L-1高浓度H2O230%噁霉灵水分散粒剂、80%代森锰锌可湿性粉剂及40%腈菌唑可湿性粉剂等高浓度杀菌剂的培养基中未受显著抑制,从而为菌株利用创造了良好条件。综上所述,盖姆斯木霉菌株TC959对辣椒立枯病具有较突出的综合性生物防治潜力,是值得进一步开发的优质资源。

Abstract  A few Trichoderma species have been utilized as biocontrol agents in agriculture due to their ability to inhibit growth of phytopathogens. However, the antagonistic mechanism of some strains is mainly performed by direct action. The objective of our study is to explore an effective strain that has comprehensive abilities, and preliminarily clarify its practical viability and action mechanism. Trichoderma gamsii strain TC959 possessing abilities of strong antagonism and plant growth promotion was singled out. It released secondary metabolites, siderophores and chitinase/xylanase to directly inhibit the growth of plant pathogens, or released indole-3-acetic acid/gibberellin to promote plant growth. The strain also activated induced systemic resistance by increasing chlorophyll a/b ratio and jasmonic acid content of pepper seedlings through root colonization, which resulted in the improvements of defense-related gene expression levels, antioxidant enzyme activity, and indole-3-acetic acid/gibberellin production. Thereby disease resistance and plant growth were enhanced and promoted, respectively. Furthermore, TC959 had a resistance advantage to oxidation and chemical fungicides, which helped viability of the strain to be maintained, and healthy pepper seedlings were effectively ensured. In conclusion, strain TC959 has biocontrol potential and comprehensive functions against pepper damping-off disease, which is valuable for further practical applications.
Keywords:  biocontrol potential       disease resistance of plant              induced systemic resistance              inhabitation effects to phytopathogens              sensitivity to chemical fungicides              Trichoderma  
Online: 07 March 2024  
About author:  WANG Heng-xu, E-mail: wanghx1127@163.com; Correspondence ZHUANG Wen-ying, Tel/Fax: +86-10-64807326, E-mail: zhuangwy@im.ac.cn

Cite this article: 

WANG Heng-xu, HU Hao, ZHAO Tian-you ZENG Zhao-qing, ZHUANG Wen-ying. 2024. Trichoderma gamsii strain TC959 with comprehensive functions to effectively reduce seedling damping-off and promote growth of pepper by direct and indirect action mechanisms. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.02.003

Abdelkhalek A, Al-Askar A A, Arishi A, Behiry S. 2022. Trichoderma hamatum strain Th23 promotes tomato growth and induces systemic resistance against tobacco mosaic virus. Journal of Fungi, 8, 228.

Aguiar R, Cunha M, Junior M L. 2014. Management of white mold in processing tomatoes by Trichoderma spp. and chemical fungicides applied by drip irrigation. Biological Control, 74, 1–5.

Asad S A. 2022. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - A review. Ecological complexity, 49, 100978.

Bansh N S, Singh A, Gopal S, Padmanabh D. 2015. Potential Role of Trichoderma asperellum T42 strain in growth of pea plant for sustainable agriculture. Journal of Pure and Applied Microbiology, 9, 1069–1074.

Bardo C, Matteo C, Sachie K, Danielle M S, Michael W, Gitta C. 2021. Stress-induced reactive oxygen species compartmentalization, perception and signaling. Nature Plants, 7, 403–412.

Biam M, Majumder D, Papang H. 2019. In vitro efficacy of native Trichoderma isolates against Pythium spp. and Rhizoctonia solani Kühn. causing damping-off disease in tomato (Solanum lycopersicum Miller). International Journal of Current Microbiology and Applied Sciences, 8, 566–579.

Campbell W G, Wei D, Kathryn R A. 2006. Apoptosis in yeast - mechanisms and benefits to a unicellular organism. Molecular Microbiology, 62, 1515–1521.

Chen K, Zhuang W Y. 2017. Three new soil-inhabiting species of Trichoderma in the Stromaticum clade with test of their antagonism to pathogens. Current Microbiology, 74, 1049–1060.

Contreras-Cornejo H A, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149, 1579–1592.

De Palma M, Docimo T, Guida G, Salzan M, Tucci M. 2021. Transcriptome modulation by the beneficial fungus Trichoderma longibrachiatum drives water stress response and recovery in tomato. Environmental and Experimental Botany, 206, 104588.

Ding G, Wang H, Li L, Chen A J, Chen L, Chen H. 2012. Trichoderones A and B: Two pentacyclic cytochalasans from the plant endophytic fungus Trichoderma gamsii. European Journal of Organic Chemistry, 2012, 2516–2519.

Ding P, Ding Y. 2020. Stories of salicylic acid: a plant defense hormone. Trends in Plant Science, 25, 549–565.

Djamei A, Kahmann R. 2012. Ustilago maydis: dissecting the molecular interface between pathogen and plant. PLoS Pathogens, 8, e1002955.

Everts K L, Egel D S, Langston D, Zhou, X G. 2014. Chemical management of Fusarium wilt of watermelon. Crop Protection, 66, 114–119.

Fiume F, Fiume G. 2005. Biological control of Botrytis gray mould and Sclerotinia drop in lettuce. Communications in agricultural and applied biological sciences, 70, 157–168.

Fristedt R, Wasilewska W, Romanowska E, Vener A V. 2012. Differential phosphorylation of thylakoid proteins in mesophyll and bundle sheath chloroplasts from maize plants grown under low or high light. Proteomics, 12, 2852–2861.

Gao S G, Xu L H, Zeng R, Ping G, Song Z W, Dai F. 2022. Baseline sensitivity of Rhizoctonia solani to four DMI fungicides. Journal of Basic Microbiology, 62, 701–710.

Ghosh S K, Panja A. 2021. Different mechanisms of signaling pathways for plant protection from diseases by fungi. In: S. Jogaiah (ed.), Biocontrol Agents and Secondary Metabolites. Woodhead Publishing, India. pp. 591–630.

Gilardi G, Vasileiadou A, Garibaldi A, Gullino M L. 2021. Biocontrol agents and resistance inducers reduce Phytophthora crown rot (Phytophthora capsici) of sweet pepper in closed soilless culture. Phytopathologia Mediterranea, 60, 149–163. 

Gupta N C, Sharma P, Rao M, Rai P K, Gupta A K. 2020. Evaluation of non-injury inoculation technique for assessing sclerotinia stem rot (Sclerotinia sclerotiorum) in oilseed brassica. Journal of Microbiological Method, 175, 105983.

Hall T A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

Harman G E. 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harziamum T-22. Plant Disease, 84, 377–393.

He X J, Zhu W W, Wu F Z. 2021. Effects of crop rotations on microbial community in rhizosphere soil of cucumber seedlings and its feedback. Allelopathy Journal, 52, 225–237.

Hoelzl G. 2019. Chloroplast lipids and their biosynthesis. Annual Review of Plant Biology, 70, 51–81.

Hua X, Zhou Y, Feng Y, Duan K, Liu M. 2021. Oral vaccine against IPNV based on antibiotic-free resistance recombinant Lactobacillus casei expressing CK6-VP2 fusion protein. Aquaculture, 535, 736425.

Huang S B, Van Aken O, Schwarzlaender M, Belt K, Millar A H. 2016. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiology, 171, 1551–1559.

Islam M H, Masud M M, Jannat M, Hossain M I, Islam S, Alam M Z. 2022. Potentiality of formulated bioagents from lab to field: A sustainable alternative for minimizing the use of chemical fungicide in controlling potato late blight. Sustainability, 14, 1–22.

Jaklitsch W M, Samuels G J, Dodd S L, Lu B S, Druzhinina I S. 2006. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Studies in Mycology, 56, 135–177.

Jaklitsch W M, Voglmayr H. 2015. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Studies in Mycology 80, 1–87.

Jin G C, Qi J F, Zu H Y, Liu S T, Gershenzon J, Lou Y G, Baldwin I T, Li R. 2023. Jasmonate-mediated gibberellin catabolism constrains growth during herbivore attack in rice. Plant cell, 35, 3828–3844.

Jing F, Zhang S W, Lui J, Xu B L. 2020. Optimization of the fermentation conditions of biocontrol agent Trichoderma longibrachiatum T6 and its efficiency against pepper blight. Chinese Journal of Biological Control, 36, 113–124.

Jo E J, Kang B G, Jang K S, Choi Y H, Kim J C, Choi G J. 2014. Control efficacy of serenade formulation against Rhizoctonia and Pythium damping-off diseases. Research in Plant Disease, 20, 201–205.

Ketta H A, Hewedy E R. 2021. Biological control of Phaseolus vulgaris and Pisum sativum root rot disease using Trichoderma species. Egyptian Journal of Biological Pest Control, 31, 96–105.

Landero Valenzuela N, Nieto Angel D, Teliz Ortiz D, Alatorre Rosas R, Ortiz Garcia C F, Orozco Santos M. 2015. Biological control of anthracnose by postharvest application of Trichoderma spp. on maradol papaya fruit. Biological Control, 91, 88–93.

Li N, Deng L Q, Li J F, Wang Z B, Han Y Y, Liu C L. 2018. Selective effect of myclobutanil enantiomers on fungicidal activity and fumonisin production by Fusarium verticillioides under different environmental condition. Pesticide Biochemistry and Physiology, 147, 102–109.

Lin Y, Lin H, Lin Y, Zhang S, Chen Y, Jiang X. 2016. The roles of metabolism of membrane lipids and phenolics in hydrogen peroxide-induced pericarp browning of harvested longan fruit. Postharvest Biology and Technology, 111,53–61.

Liu J L, Wang L H, Li J Q, Liu R. 2012. The correlation of SPAD, chlorophyll content and protein content in 10 ryegrass varieties. Chinese Agricultural Science Bulletin, 28, 83–86.

Liu M, Lu Z J, Wang W J, Zheng J Q, Huang J S, Wu X H. 2010. Effect of the crude toxin from seedborne Fusarium oxysporum on seed germination and seedlings of cabbage. Journal of China Agricultural University, 15, 63–69.

Lolle S, Stevens D, Coaker G. 2020. Plant NLR-triggered immunity: from receptor activation to downstream signaling. Current Opinion in Immunology, 62, 99–105.

Maji E A, Shaibu A A. 2012. Effects of antibiotics on biological control agents and their efficacy to control rice sheath blight (R. solani AG-I.1). International Journal of Agricultural Technology, 8, 993–997.

Marco S D, Metruccio E G, Moretti S, Nocentini M, Carella G, Pacetti A. 2022. Activity of Trichoderma asperellum strain ICC 012 and Trichoderma gamsii strain ICC 080 toward diseases of esca complex and associated pathogens. Frontiers in Microbiology, 12, 4210.

Mariangela C, Pasquale C, Ilaria D L, Sheridan L W, Matteo L, Rosa R, Maria C D. 2019. Trichoderma atroviride P1 colonization of tomato plants enhances both direct and indirect defense barriers against insects. Frontiers in Physiology, 10, 813–813.

Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M. 2012. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Frontiers in Plant Science, 3, 108.Mittler R. 2017. ROS are good. Trends in Plant Science, 22, 11–19.

Mojica-Marín V, Luna-Olvera H A, Sandoval-Coronado C F, Pereyra-Alférez B, Alvarado-Gomez O G. 2008. Antagonistic activity of selected strains of Bacillus thuringiensis against Rhizoctonia solani of chili pepper. African Journal of Biotechnology, 7, 1271–1276.

Mondello V, Songy A, Battiston E, Catia P, Cindy C, Patricia T A, Christophe C, Laura M, Florence F. 2017. Grapevine trunk diseases: a review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Disease, 102, 1189–1217.

Nai Y S, Lee M R, Kim S, Lee S J, Kim J S. 2017. Relationship between expression level of hygromycin B-resistant gene and Agrobacterium tumefaciens-mediated transformation efficiency in Beauveria bassiana JEF-007. Journal of Applied Microbiology, 123, 724–731.

Naing K W, Anees M, Kim S J, Nam Y, Kim Y C, Kim K Y. 2014. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Annals of Microbiology, 64, 55–63.

Nguyen L T, Schmidt H A, von Haeseler A, Minh B Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biolog and Evolution, 32, 268–274.

Oktarina H, Artika W, Mukhriza T. 2021. The potential of Trichoderma species to remediate silver nanoparticles contamination. IOP Conference Series: Earth and Environmental Science, 711, 012025.

Page R D. 1996. TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358.

Pan L, Zhao X, Chen M, Fu Y, Chen J. 2019. Effect of exogenous methyl jasmonate treatment on disease resistance of postharvest kiwifruit. Food Chemistry, 305, 125483.

Pang K, Dong S, Hao P, Chen T, Wang X, Yu X. 2020. Fungicides reduce the abundance of yeast-like symbionts and survival of white-backed planthopper Sogatella furcifera (Homoptera: Delphacidae). Insects, 11, 209.

Parrilli M, Sommaggio D, Tassini C, Marco S D, Burgio G. 2019. The role of Trichoderma spp. and silica gel in plant defense mechanisms and insect response in a vineyard. Bulletin of Entomological Research, 109, 1–10.

Philip P C, Kikin H M, Widodo W. 2017. Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10–86: a synergistic chili pepper seed treatment for Phytophthora capsici infested soil. European Journal of Plant Pathology, 147, 157–166.

Proao A A, Coello D, Granda I V, Ballesteros I, José Miguel A S. 2021. The osmotic action of sugar combined with hydrogen peroxide and bee-derived antibacterial peptide Defensin-1 is crucial for the antibiofilm activity of eucalyptus honey. LWT-Food Science & Technology, 136, 110379.

Rinu K, Sati P, Pandey A. 2014. Trichoderma gamsii (NFCCI 2177): A newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. Journal of Basic Microbiology, 54, 408–417.

Rodriguez M D C H, Evans H C, Abreu L M D, Macedo D M D, Barreto R W. 2021. New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Scientific Reports, 11, 5671.

Roghayeh N, Reza D, Khadijeh M K, Masoud A, Hadi A. 2018. Retrotransposonable regions of sunflower genome having relevance with resistance to Sclerotinia species: S. sclerotiorum and S. minor. Australasian Plant Pathology, 47, 511–519.

Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

Salas-Marina M A, Silva-Flores M A, Uresti-Rivera E E, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S. 2011. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology, 131, 15–26.

Sarrocco S, Esteban P, Vicente I, Bernardi R, Plainchamp T, Domenichini S. 2021. Straw competition and wheat root endophytism of Trichoderma gamsii T6085 as useful traits in the biological control of Fusarium head blight. The American Phytopathological Society, 111, 1129–1136.

Shahid M. 2014. Biocontrol mechanisms by Trichoderma through genomics and proteomics analysis: A review. African Journal of Microbiology Research, 8, 3064–3069.

Shen Q, Liu L, Wang L, Wang Q. 2018. Indole primes plant defense against necrotrophic fungal pathogen infection. PLoS ONE, 13, e0207607.

Stummer B E, Zhang X, Yang H, Harvey P. 2021. Co-inoculation of Trichoderma gamsii A5MH and Trichoderma harzianum Tr906 in wheat suppresses in planta abundance of the crown rot pathogen Fusarium pseudograminearum and impacts the rhizosphere soil fungal microbiome. Biological Control, 165, 104809.

Susilowati A, Wahyudi A T, Lestari Y, Suwanto A, Wiyono S. 2011. Potential Pseudomonas isolated from soybean rhizosphere as biocontrol against soilborne phytopathogenic fungi. Hayati Journal of Biosciences, 18, 51–56.

Swarbrick P J, Schulze-Lefert P, Scholes J D. 2006. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ, 29, 1061–1076.

Triantafyllou A, Kamou N, Papadopoulou A, Leontidou K, Mellidou I, Karamanoli K. 2023. Evaluation of the biocontrol potential of PGPB strains isolated from drought-tolerant tomatoes against fungal pathogens. Journal of Plant Pathology, 105, 1013–1029.

Vergne E, Ballini E, Marques S, Mammar B S, Droc G, Gaillard S. 2007. Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus. New Phytologist, 174, 159–171.

Vlot A C, Sales J H, Lenk M, Bauer K, Brambilla A, Sommer A, Chen Y Y, Wenig M, Nayem S. 2021. Systemic propagation of immunity in plants. New Phytologist, 229, 1234–1250.

Wang C, Zhuang W Y. 2019. Evaluating effective Trichoderma isolates for biocontrol of Rhizoctonia solani causing root rot of Vigna unguiculata. Journal of Integrative Agriculture, 18, 132–139.

Wang F H, Zhu L S, Lv D D, Guo P P, Wang J, Wang J H. 2015. Effects of azoxystrobin on soil micro-organisms and enzymatic activities. Fresenius Environmental Bulletin, 24, 3336–3343.

Wang G J, Zeng F L, Song P, Sun B, Wang Q, Wang J Y. 2022. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves, Journal of plant physiology, 272, 153669.

Wang H X, Wang Z G, Liu Z P, Wang K X, Xu W H. 2020. Membrane disruption of Fusarium oxysporum f. sp. niveum induced by myriocin from Bacillus amyloliquefaciens LZN01. Microbial Biotechnology, 14, 517–534.

Wang H X, Wang Z G, Xu W H, Wang K X. 2021. Comprehensive transcriptomic and proteomic analyses identify intracellular targets for myriocin to induce Fusarium oxysporum f. sp. niveum cell death. Microbial Cell Factories, 20, 69–84.

Wang X J, Huang D F, Cai L M, Jiang H, Cheng J F. 2004. Guidelines for Field efficacy Trials of pesticides (II). Standards Press of China, Beijing. (in Chinese)

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111, 1021–1058. 

Worku Y, Gerhardson B. 1996. Suppressiveness to clubroot, pea root rot and fusarium wilt in swedish soils. Journal of Phytopathology, 144, 143–146.

Yilmaz K, Akinci I E, Akinci S. 2004. Effect of salt stress on growth and Na, K contents of pepper (Capsicum annuum L.) in germination and seedling stages. Pakistan Journal of Biological Sciences, 7, 293–301.

Yu Y, Cai J S, Ma L H, Huang Z Q, Wang Y B, Fang A F, Yang Y H, Qing L, Bi C W. 2020. Population structure and aggressiveness of Sclerotinia sclerotiorum from rapeseed (Brassica napus) in Chongqing city. Plant Disease, 104, 1201–1206.

Zeng Z Q, Zhuang W Y. 2022. New species of Nectriaceae (Hypocreales) from China. Journal of Fungi, 8, 1075.

Zhang C, Wang W, Xue M, Liu Z, Zhang Q, Hou J. 2021. The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea. Journal of Fungi, 7, 685.

Zhang H C, Ge Y F, Xie X Y, Atefi A, Wijewardane N K, Thapa S. 2022a. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods, 18, 60.

Zhang W, Yang J Y, Lv X, Lin J M, Niu X L. 2021. A preliminary study of the antifungal activity and antagonism mechanisms of Trichoderma spp. against turfgrass pathogens. Acta Prataculturae Sinica, 30, 137–149. (in Chinese)

Zhang X H, Li X, Li H N, Wang Z R, Xia R, Hu J, Wang P F, Zhou X M, Wan L L, Hong D F, Yang G S. 2022b. Quantitative trait locus mapping and improved resistance to sclerotinia stem rot in a backbone parent of rapeseed (Brassica napus L.). Frontiers in Plant Science, 13, 1056206.

Zhang Y, Li Y, Hassan M J, Li Z, Peng Y. 2020. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biology, 20, 150.

Zhang Y, Zhuang W Y. 2019. Trichoderma brevicrassum strain TC967 with capacities of diminishing cucumber disease caused by Rhizoctonia solani and promoting plant growth. Biological Control, 142, 104151.

Zhang Y, Zhuang W Y. 2022. MAPK cascades mediating biocontrol activity of Trichoderma brevicrassum strain TC967. Journal of Agricultural and Food Chemistry, 70, 2762–2775.

Zhang Y B, Zhuang W Y. 2017. First step evaluation of Trichoderma antagonism against plant pathogenic fungi in dual culture. Mycosystema, 36, 1251–1259.

Zhu Z X, Zhuang W Y. 2015. Trichoderma (Hypocrea) species with green ascospores from China. Persoonia, 34, 113–129.

No related articles found!
No Suggested Reading articles found!