Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Integrated transcriptomic and metabolomic analyses reveal a novel mechanism of resistance to Colletotrichum fructicola in pear

Xiaomei Tang1*, Yue Wang1*, Yuqing Guo1, Luoluo Xie1, Wei Song1, Ziwen Xiao1, Ruichang Yin1, Zhe Ye1, Xueqiu Sun1, Wenming Wang2, Lun Liu1, 3, Zhenfeng Ye1, 3, Zhenghui Gao4#, Bing Jia1#

1Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China

2Science and Technology Experiment Station of Shexian, Huangshan, Anhui Province, China

3Integrated Experimental Station in Dabie Mountains, Institute of New Rural Development, Anhui Agricultural University, Lu’an 237000, China

4Key Laboratory of Horticultural Crop Germplasm Creation and Utilization, Ministry of Agriculture and Rural AreasInstitute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由果生炭疽引起的梨炭疽病是一种毁灭性病害,严重影响大多数梨品种的产量和品质。然而,目前尚缺乏有效的防治措施。此外,梨果生炭疽关键抗性调节机制尚不清楚。为了探究梨炭疽病的抗性机制,本研究以梨炭疽病抗性品种涩梨”和易感品种“翠冠”为材料,对接种果生炭疽和无菌水5天的‘涩梨‘翠冠’叶片进行转录组和代谢组关联分析。结果表明,这些差异表达基因和差异积累代谢物主要与代谢和次级代谢合成途径有关,包括α-亚麻酸代谢、苯丙氨酸生物合成代谢、不饱和脂肪酸生物合成、氨基酸及其衍生物的合成等。其中,抗病品种‘涩梨’感染炭疽后差异代谢物主要为不饱和脂肪酸、氨基酸及其衍生物,如亚油酸及其衍生物、月桂酸N-乙酰-L-谷氨酸和L-脯氨酸的积累显著增加,而易感品种‘翠冠’感染炭疽后氧化型谷胱甘肽N-乙酰-L-谷氨酸以及原花青素含量显著降低,这些差异代谢物的含量变化可能与‘涩梨‘翠冠’炭疽病的抗性差异有关。总之,本研究为梨炭疽病抗性调控提供了新的见解,有助于研发新的梨炭疽病防治策略、以及炭疽病抗性品种的培育。



Abstract  

Pear anthracnose, caused by Colletotrichum fructicola, is a devastating disease that seriously affects most pear varieties, thereby compromising their yield and quality. However, effective control of this pathogen is lacking. Moreover, the critical resistance responses to C. fructicola in pear are unknown. To investigate these resistance mechanisms of pear against Colletotrichum fructicola, transcriptomic and metabolomic were performed and analyzed in pear anthracnose-resistant pear variety ‘Seli’ and the susceptible variety ‘Cuiguan’ after infection with C. fructicola, respectively. The differentially expressed genes and differentially accumulated metabolites (DAMs) were mainly related to metabolism and secondary metabolite synthetic pathways, including alpha-linoleic acid metabolism, phenylalanine biosynthesis metabolism, unsaturated fatty acids biosynthesis, and amino acids and derivatives biosynthesis etc. In particular, the accumulation of unsaturated fatty acids, amino acids and derivatives, such as linoleic acid and derivatives, lauric acid, N-acetyl-L-glutamic acid and L-proline was significantly increased in the resistant pear variety ‘Seli’ upon C. fructicola infection, while the amino acids of oxiglutatione and N-acetyl-L-glutamic acid, as well as the proanthocyanidins were significantly decreased in susceptible pear variety ‘Cuiguan’ upon C. fructicola infection, indicating that these metabolites were responsible for the different levels of resistance to anthracnose in ‘Seli’ and ‘Cuiguan’. Overall, our results provided new insights into pear anthracnose resistance regulation, and this may assist in developing new strategies to control pear anthracnose, as well as in breeding anthracnose-resistant varieties.

Keywords:  pear anthracnose       Colletotrichum fructicola        transcriptomic        metabolomic        disease resistance  
Online: 31 December 2024  
Fund: 

We would like to thank stationmaster Wenming Wang from the Science and Technology Experiment Station of Shexian, and professor Zhenghui Gao from the Anhui Academy of Agricultural Sciences for providing us with materials of ‘Seli’. This work was supported by the China Agriculture Research System (CARS-28-14), National Natural Science Foundation of China (32302484), Key Research Project of Natural Science and Major Science and Technology Project in Colleges and Universities of the Anhui Provincial Department of Education (2022AHO50926 and 2022AH040129). 

About author:  *These authors contributed equally to this study. #Correspondence Bing Jia, E-mail: jb1977@ahau.edu.cn; Zhenghui Gao, E-mail: gzh96gao@163.com

Cite this article: 

Xiaomei Tang, Yue Wang, Yuqing Guo, Luoluo Xie, Wei Song, Ziwen Xiao, Ruichang Yin, Zhe Ye, Xueqiu Sun, Wenming Wang, Lun Liu, Zhenfeng Ye, Zhenghui Gao, Bing Jia. 2024. Integrated transcriptomic and metabolomic analyses reveal a novel mechanism of resistance to Colletotrichum fructicola in pear. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.12.041

Browse, J. and Howe, G A. (2008). New weapons and a rapid response against insect attack. Plant Physiology, 146, 832-838.

Cai, J H. and Aharoni, A. (2022). Amino acids and their derivatives mediating defense priming and growth tradeoff. Current Opinion in Plant Biology, 69, 102288.

Chassot, C. and Métraux, J P. (2005). The cuticle as source of signals for plant defense. Plant Biosystems139, 28-31.

Curien, G. Giustini, C. Montillet, J L. Mas, Y M S. Cobessi, D. Ferrer, J L. Matringe M. Grechkin A. and Rolland N. (2016). The chloroplast membrane associated ceQORH putative quinone oxidoreductase reduces long-chain, stress-related oxidized lipids. Phytochemistry122, 45-55.

Fridovich, I. (1997). Superoxide anion radical (O2-.), superoxide dismutases, and related matters. Journal of Biological Chemistry272, 18515-18517.

Fu, M. Bai, Q. Zhang, H. Guo, Y S. Peng, Y H. Zhang, P F. Sheng L. Hong N. Xu W X. and Wang G P. (2022). Transcriptome analysis of the molecular patterns of pear plants infected by two Colletotrichum fructicola pathogenic strains causing contrasting sets of leaf symptoms. Frontiers in Plant Science13, 761133.

Fu, M. Crous, P W., Bai, Q. Zhang, P F. Xiang, J. Guo, Y S. Zhao, F F. Yang, M M. Hong, N. Xu, W X. and Wang, G P. (2019). Colletotrichum species associated with anthracnose of Pyrus spp. in China. Persoonia42, 1-35.

Gao, Y H. Yang, Q S. Yan, X H. Wu, X Y. Yang, F. Li, J Z. Wei, J. Ni, J B. Ahmad, M. Bai, S L. and Teng, Y W. (2021). High-quality genome assembly of ‘Cuiguan’ pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. Horticulture Research, 8, 197.

Goto, Y. Maki, N. Ichihashi, Y. Kitazawa, D. Igarashi, D. Kadota, and Y. Shirasu, K. (2020). Exogenous treatment with glutamate induces immune responses in Arabidopsis. Molecular Plant Microbe Interactions, 33, 474-487.

Gullner, G. Komives, T. Király, L. and Schröder, P. (2018). Glutathione s-transferase enzymes in plant-pathogen interactions. Frontiers in Plant Science9.

Han, C Y. Su, Z Y. Zhao, Y C. Li, C H. Guo, B D. Wang, Q. Liu, F Q. and Zhang, S L. (2024).      Uncovering the mechanisms underlying pear leaf apoplast protein-mediated resistance against Colletotrichum fructicola through transcriptome and proteome profiling. Phytopathology Research6, 3.

He, M. Qin, C X. Wang, X. and Ding, N Z. (2020). Plant unsaturated fatty acids: biosynthesis and regulation. Frontiers in Plant Science11, 390.

Huang, J L. Gu, M. Lai, Z B. Fan, B F. Shi, K. Zhou, Y H. Yu, J Q. and Chen, Z X. (2010). Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology153, 1526-1538.

Huang, R. Sun, W X. Wang, L R. Li, Q L. Huang, S P. Tang, L H. Guo, T X. Mo, J Y. and Hsiang, T. (2021). Identification and characterization of Colletotrichum species associated with anthracnose disease of banana. Plant Pathology70, 1827-1837.

Kachroo, A. and Kachroo, P. (2009). Fatty Acid-derived signals in plant defense. Annual Review of Phytopathology, 47, 153-176.

Kadotani, N. Akagi, A. Takatsuji, H. Miwa, T. and Igarashi, D. (2016) Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC Plant Biology, 16.

Kan, C C. Chung, T Y. Wu, H Y. Juo, Y A. and Hsieh, M H. (2017) Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genomics18.

Kim, D. Paggi, J M. Park, C. Bennett, C. and Salzberg, S L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology37, 907-915.

Kozieł, E. Otulak-Kozieł, K. and Rusin, P. (2024). Glutathione-the “master” antioxidant in the regulation of resistant and susceptible host-plant virus-interaction. Frontiers in Plant Science, 15.

Li, H. Tian, J. Yao, Y Y. Zhang, J. Song, T T. Li, K T. and Yao, Y C. (2019). Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. Plant Physiology and Biochemistry, 139, 141-151.

Li, P Q. Ruan, Z. Fei, Z X. Yan, J J. and Tang, G H. (2021). Integrated transcriptome and metabolome analysis revealed that flavonoid biosynthesis may dominate the resistance of Zanthoxylum bungeanum against stem canker. Journal of Agricultural and Food Chemistry, 69, 6360-6378.

Li, Y. Zhao, X. Zhang, M M. He, X. Huang, Y. Ahmad, S. Liu, Z J. and Lan, S. (2023). Genome-based identification of the CYP75 gene family in Orchidaceae and its expression patterns in Cymbidium goeringii. Frontiers in Plant Science14, 1243828.

Liang, C H. Gao, W T. Ge, T. Tan, X W. Wang, J Y. Liu, H X. Wang, Y. Han, C. Xu, Q. and Wang, Q Q. (2021). Lauric acid is a potent biological control agent that damages the cell membrane of Phytophthora sojae. Frontiers in Microbiology, 12, 666761.

Lim, G H. Singhal, R. Kachroo, A. and Kachroo, P. (2017). Fatty acid- and lipid-mediated signaling in plant defense. Annual Review of Phytopathology, 55, 505-536.

Lima, N B. de A. Batista, M V. De Morais, M A. Barbosa, M A G. Michereff, S J. Hyde, K D. and Câmara, M P S. (2013). Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Diversity, 61, 75-88.

Liu, C. Wang, X. Shulaev, V. and Dixon, R A. (2016). A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nature Plants2, 16182.

Liu, S A. Zhang, S H. He, S N. Qiao, X Y. and Runa, A. (2023). Tea plant (Camellia sinensis) lipid metabolism pathway modulated by tea field microbe (Colletotrichum camelliae) to promote disease. Horticulture Research10, uhad028.

Lu, Q H. Wang, Y C. Xiong, F. Hao, X Y. Zhang, X Z. Li, N N. Wang, L. Zeng, J M. Yang, Y J. and Wang, X C. (2020). Integrated transcriptomic and metabolomic analyses reveal the effects of callose deposition and multihormone signal transduction pathways on the tea plant-Colletotrichum camelliae interaction. Scientific Reports10, 12858.

Mehmood, N. Yuan, Y. Ali, M. Iftikhar, J. Cheng, C Z. Lyu, M L. and Wu, B H. (2021). Early transcriptional response of terpenoid metabolism to Colletotrichum gloeosporioides in a resistant wild strawberry Fragaria nilgerrensis. Phytochemistry181, 112590.

Naoumkina, M A. Zhao, Q. Gallego-Giraldo, L. Dai, X. Zhao, P X. and Dixon, R A. (2010). Genome-wide analysis of phenylpropanoid defence pathways. Molecular Plant Pathology, 11, 829-46.

Pratiwi, P. Tanaka, G. Takahashi, T. Xie, X. Yoneyama, K. Matsuura, H. and Takahashi, K. (2017). Identification of jasmonic acid and jasmonoyl-Isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the model lycophyte Selaginella moellendorffii. Plant Cell Physiology58, 789-801.

Shan, Y F. Li, M Y. Wang, R Z. Li, X G. Lin, J. Li, J M. Zhao, K J. and Wu, J. (2023). Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears. Journal of Integrative Agriculture22, 120-138.

Shang, S P. Wang, B. Zhang, S. Liu, G L. Liang, X F. Zhang, R. Gleason, M L. and Sun, G Y. (2020). A novel effector CfEC92 of Colletotrichum fructicola contributes to glomerella leaf spot virulence by suppressing plant defences at the early infection phase. Molecular Plant Pathology, 21, 936-950.

Tang, X M. Lu, F. Xiao, Z W. Wang, Y. Hu, G Q. Cai, K X. Yin, R C. Song, W. Xie, L L. Guo, G L. Wang, W M. Liu, L. Liu, L. Ye, Z F. Heng, W. Guo, X P. Wang, D S. and Jia, B. (2024). Determination of anthracnose (Colletotrichum fructicola) resistance mechanism using transcriptome analysis of resistant and susceptible pear (Pyrus pyrifolia). BMC Plant Biology24, 619.

Trapnell, C. Roberts, A. Goff, L. Pertea, G. Kim, D. Kelley, D R. Pimentel, H. Salzberg, S L. Rinn, J L. and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols7, 562-578.

Varet, H. Brillet-Gueguen, L. Coppee, J Y. and Dillies, M A. (2016). SARTools: A DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. Plos One11, e0157022.

Viswanath, K K. Varakumar, P. Pamuru, R R. Basha, S J. Mehta, S. and Rao, A D. (2020). Plant lipoxygenases and their role in plant physiology. Journal of Plant Biology63, 83-95.

Wang, J. Yang, C L. Hu, X F. Yao, X L. Han, L. Wu, X M. Li, R Y. Wen, T C. and Ming, L. (2022). Lauric acid induces apoptosis of rice sheath blight disease caused by rhizoctonia solani by affecting fungal fatty acid metabolism and destroying the dynamic equilibrium of reactive oxygen species. Journal of Fungi8.

Wang, Y. Branicky, R. Noe, A. and Hekimi, S. (2018a). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology, 217, 1915-1928.

Wang, Y C. Hao, X Y. Lu, Q H. Wang, L. Qian, W J. Li, N. Ding, C Q. Wang, X C. and Yang, Y J. (2018b). Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose. Horticulture Research5, 18.

Wang, Y Q. Wang, T. Qi, S Y. Zhao, J M. Kong, J M. Xue, Z H. Sun, W J. and Zeng, W. (2024). Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis). BMC Genomics25, 238.

Wang, Y. Wang, X H. Fang, J H. Yin, W C. Yan, X X. Tu, M X. Liu, H. Zhang, Z D. Li, Z. Gao, M. Lu, H. Wang, Y J. and Wang, X P. (2023). VqWRKY56 interacts with VqbZIPC22 in grapevine to promote proanthocyanidin biosynthesis and increase resistance to powdery mildew. New Phytologist237, 1856-1875.

Wang, Y C. Qian, W J. Li, N N. Hao, X Y. Wang, L. Xiao, B. Wang X C. Yang, Y J. (2016). Metabolic changes of caffeine in tea plant (Camellia sinensis (L.) O. Kuntze) as defense response to Colletotrichum fructicola. Journal of Agricultural and Food Chemistry64, 6685-6693.

Wagner, U. Edwards, R. Dixon, D P. and Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology, 49, 515–532.

Wasternack, C. and Hause, B. (2019). The missing link in jasmonic acid biosynthesis. Nature Plants5, 776-777.

Wu, L Q. Zhu, L W. Hen, W. Ye, Z F. Liu, G. and Shi, S X. (2010). Identification of Dangshan pear anthracnose pathogen and screening fungicides against it. Scientia Agricultura Sinica, 43, 3750-3758.

Yang, J. Chen, Y Z. W, Y X. Tao, L. Zhang, Y D. Wang, S R. Zhang, G C. and Zhang, J. (2021). Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pesticide Biochemistry and Physiology175, 104859.

Yang, J L. Sun, C. Fu, D. and Yu, T. (2017). Test for L -glutamate inhibition of growth of Alternaria alternata by inducing resistance in tomato fruit. Food Chemistry, 230, 145-153.

Yang, Q. He, Y J. Kabahuma, M. Chaya, T. Kelly, A. Borrego, E. Yang, B. Kasmi F E. Yang, L. Teixeira, P. Kolkman, J. Nelson R. Kolomiets, M. Dangl, J L. Wisser, R. Caplan, J. Lauter, N. and Balint-Kurti, P. (2017). A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics49, 1364-1372.

Yu, D. Wei, W. Fan, Z Q. Chen, J Y. You, Y L. Huang, W D. and Zhan, J C. (2023). VabHLH137 promotes proanthocyanidin and anthocyanin biosynthesis and enhances resistance to Colletotrichum gloeosporioides in grapevine. Horticulture Research10, uhac261.

Zhang, J. He, L. Guo, C. Liu, Z Y. Kaliaperumal, K. Zhong, B L. and Jiang, Y M. (2022). Evaluation of Aspergillus aculeatus GC-09 for the biological control of citrus blue mold caused by Penicillium italicum. Fungal Biology, 126, 201-212.

Zhang, L X. Bao, H B. Meng, F L. Ren, Y. and Tian, C M. (2023). Transcriptome and metabolome reveal the role of flavonoids in poplar resistance to poplar anthracnose. Industrial Crops and Products197.

Zhao, T. Huang, C B. Li, N. Ge, Y Q. Wang, L. Tang, Y J. Wang, Y J. Li, Y. and Zhang, C H. (2024). Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew. Plant Physiology, 1, kiae249.

Zhu, L M. Yang, Q. Yu, X M. Fu, X J. Jin, H X. and Yuan, F J. (2022). Transcriptomic and metabolomic analyses reveal a potential mechanism to improve soybean resistance to anthracnose. Frontiers in Plant Science13, 850829.

No related articles found!
No Suggested Reading articles found!