Browse, J. and Howe, G A. (2008). New weapons and a rapid response against insect attack. Plant Physiology, 146, 832-838.
Cai, J H. and Aharoni, A. (2022). Amino acids and their derivatives mediating defense priming and growth tradeoff. Current Opinion in Plant Biology, 69, 102288.
Chassot, C. and Métraux, J P. (2005). The cuticle as source of signals for plant defense. Plant Biosystems, 139, 28-31.
Curien, G. Giustini, C. Montillet, J L. Mas, Y M S. Cobessi, D. Ferrer, J L. Matringe M. Grechkin A. and Rolland N. (2016). The chloroplast membrane associated ceQORH putative quinone oxidoreductase reduces long-chain, stress-related oxidized lipids. Phytochemistry, 122, 45-55.
Fridovich, I. (1997). Superoxide anion radical (O2-.), superoxide dismutases, and related matters. Journal of Biological Chemistry, 272, 18515-18517.
Fu, M. Bai, Q. Zhang, H. Guo, Y S. Peng, Y H. Zhang, P F. Sheng L. Hong N. Xu W X. and Wang G P. (2022). Transcriptome analysis of the molecular patterns of pear plants infected by two Colletotrichum fructicola pathogenic strains causing contrasting sets of leaf symptoms. Frontiers in Plant Science, 13, 761133.
Fu, M. Crous, P W., Bai, Q. Zhang, P F. Xiang, J. Guo, Y S. Zhao, F F. Yang, M M. Hong, N. Xu, W X. and Wang, G P. (2019). Colletotrichum species associated with anthracnose of Pyrus spp. in China. Persoonia, 42, 1-35.
Gao, Y H. Yang, Q S. Yan, X H. Wu, X Y. Yang, F. Li, J Z. Wei, J. Ni, J B. Ahmad, M. Bai, S L. and Teng, Y W. (2021). High-quality genome assembly of ‘Cuiguan’ pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. Horticulture Research, 8, 197.
Goto, Y. Maki, N. Ichihashi, Y. Kitazawa, D. Igarashi, D. Kadota, and Y. Shirasu, K. (2020). Exogenous treatment with glutamate induces immune responses in Arabidopsis. Molecular Plant Microbe Interactions, 33, 474-487.
Gullner, G. Komives, T. Király, L. and Schröder, P. (2018). Glutathione s-transferase enzymes in plant-pathogen interactions. Frontiers in Plant Science, 9.
Han, C Y. Su, Z Y. Zhao, Y C. Li, C H. Guo, B D. Wang, Q. Liu, F Q. and Zhang, S L. (2024). Uncovering the mechanisms underlying pear leaf apoplast protein-mediated resistance against Colletotrichum fructicola through transcriptome and proteome profiling. Phytopathology Research, 6, 3.
He, M. Qin, C X. Wang, X. and Ding, N Z. (2020). Plant unsaturated fatty acids: biosynthesis and regulation. Frontiers in Plant Science, 11, 390.
Huang, J L. Gu, M. Lai, Z B. Fan, B F. Shi, K. Zhou, Y H. Yu, J Q. and Chen, Z X. (2010). Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology, 153, 1526-1538.
Huang, R. Sun, W X. Wang, L R. Li, Q L. Huang, S P. Tang, L H. Guo, T X. Mo, J Y. and Hsiang, T. (2021). Identification and characterization of Colletotrichum species associated with anthracnose disease of banana. Plant Pathology, 70, 1827-1837.
Kachroo, A. and Kachroo, P. (2009). Fatty Acid-derived signals in plant defense. Annual Review of Phytopathology, 47, 153-176.
Kadotani, N. Akagi, A. Takatsuji, H. Miwa, T. and Igarashi, D. (2016) Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC Plant Biology, 16.
Kan, C C. Chung, T Y. Wu, H Y. Juo, Y A. and Hsieh, M H. (2017) Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genomics, 18.
Kim, D. Paggi, J M. Park, C. Bennett, C. and Salzberg, S L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37, 907-915.
Kozieł, E. Otulak-Kozieł, K. and Rusin, P. (2024). Glutathione-the “master” antioxidant in the regulation of resistant and susceptible host-plant virus-interaction. Frontiers in Plant Science, 15.
Li, H. Tian, J. Yao, Y Y. Zhang, J. Song, T T. Li, K T. and Yao, Y C. (2019). Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. Plant Physiology and Biochemistry, 139, 141-151.
Li, P Q. Ruan, Z. Fei, Z X. Yan, J J. and Tang, G H. (2021). Integrated transcriptome and metabolome analysis revealed that flavonoid biosynthesis may dominate the resistance of Zanthoxylum bungeanum against stem canker. Journal of Agricultural and Food Chemistry, 69, 6360-6378.
Li, Y. Zhao, X. Zhang, M M. He, X. Huang, Y. Ahmad, S. Liu, Z J. and Lan, S. (2023). Genome-based identification of the CYP75 gene family in Orchidaceae and its expression patterns in Cymbidium goeringii. Frontiers in Plant Science, 14, 1243828.
Liang, C H. Gao, W T. Ge, T. Tan, X W. Wang, J Y. Liu, H X. Wang, Y. Han, C. Xu, Q. and Wang, Q Q. (2021). Lauric acid is a potent biological control agent that damages the cell membrane of Phytophthora sojae. Frontiers in Microbiology, 12, 666761.
Lim, G H. Singhal, R. Kachroo, A. and Kachroo, P. (2017). Fatty acid- and lipid-mediated signaling in plant defense. Annual Review of Phytopathology, 55, 505-536.
Lima, N B. de A. Batista, M V. De Morais, M A. Barbosa, M A G. Michereff, S J. Hyde, K D. and Câmara, M P S. (2013). Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Diversity, 61, 75-88.
Liu, C. Wang, X. Shulaev, V. and Dixon, R A. (2016). A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nature Plants, 2, 16182.
Liu, S A. Zhang, S H. He, S N. Qiao, X Y. and Runa, A. (2023). Tea plant (Camellia sinensis) lipid metabolism pathway modulated by tea field microbe (Colletotrichum camelliae) to promote disease. Horticulture Research, 10, uhad028.
Lu, Q H. Wang, Y C. Xiong, F. Hao, X Y. Zhang, X Z. Li, N N. Wang, L. Zeng, J M. Yang, Y J. and Wang, X C. (2020). Integrated transcriptomic and metabolomic analyses reveal the effects of callose deposition and multihormone signal transduction pathways on the tea plant-Colletotrichum camelliae interaction. Scientific Reports, 10, 12858.
Mehmood, N. Yuan, Y. Ali, M. Iftikhar, J. Cheng, C Z. Lyu, M L. and Wu, B H. (2021). Early transcriptional response of terpenoid metabolism to Colletotrichum gloeosporioides in a resistant wild strawberry Fragaria nilgerrensis. Phytochemistry, 181, 112590.
Naoumkina, M A. Zhao, Q. Gallego-Giraldo, L. Dai, X. Zhao, P X. and Dixon, R A. (2010). Genome-wide analysis of phenylpropanoid defence pathways. Molecular Plant Pathology, 11, 829-46.
Pratiwi, P. Tanaka, G. Takahashi, T. Xie, X. Yoneyama, K. Matsuura, H. and Takahashi, K. (2017). Identification of jasmonic acid and jasmonoyl-Isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the model lycophyte Selaginella moellendorffii. Plant Cell Physiology, 58, 789-801.
Shan, Y F. Li, M Y. Wang, R Z. Li, X G. Lin, J. Li, J M. Zhao, K J. and Wu, J. (2023). Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears. Journal of Integrative Agriculture, 22, 120-138.
Shang, S P. Wang, B. Zhang, S. Liu, G L. Liang, X F. Zhang, R. Gleason, M L. and Sun, G Y. (2020). A novel effector CfEC92 of Colletotrichum fructicola contributes to glomerella leaf spot virulence by suppressing plant defences at the early infection phase. Molecular Plant Pathology, 21, 936-950.
Tang, X M. Lu, F. Xiao, Z W. Wang, Y. Hu, G Q. Cai, K X. Yin, R C. Song, W. Xie, L L. Guo, G L. Wang, W M. Liu, L. Liu, L. Ye, Z F. Heng, W. Guo, X P. Wang, D S. and Jia, B. (2024). Determination of anthracnose (Colletotrichum fructicola) resistance mechanism using transcriptome analysis of resistant and susceptible pear (Pyrus pyrifolia). BMC Plant Biology, 24, 619.
Trapnell, C. Roberts, A. Goff, L. Pertea, G. Kim, D. Kelley, D R. Pimentel, H. Salzberg, S L. Rinn, J L. and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7, 562-578.
Varet, H. Brillet-Gueguen, L. Coppee, J Y. and Dillies, M A. (2016). SARTools: A DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. Plos One, 11, e0157022.
Viswanath, K K. Varakumar, P. Pamuru, R R. Basha, S J. Mehta, S. and Rao, A D. (2020). Plant lipoxygenases and their role in plant physiology. Journal of Plant Biology, 63, 83-95.
Wang, J. Yang, C L. Hu, X F. Yao, X L. Han, L. Wu, X M. Li, R Y. Wen, T C. and Ming, L. (2022). Lauric acid induces apoptosis of rice sheath blight disease caused by rhizoctonia solani by affecting fungal fatty acid metabolism and destroying the dynamic equilibrium of reactive oxygen species. Journal of Fungi, 8.
Wang, Y. Branicky, R. Noe, A. and Hekimi, S. (2018a). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology, 217, 1915-1928.
Wang, Y C. Hao, X Y. Lu, Q H. Wang, L. Qian, W J. Li, N. Ding, C Q. Wang, X C. and Yang, Y J. (2018b). Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose. Horticulture Research, 5, 18.
Wang, Y Q. Wang, T. Qi, S Y. Zhao, J M. Kong, J M. Xue, Z H. Sun, W J. and Zeng, W. (2024). Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis). BMC Genomics, 25, 238.
Wang, Y. Wang, X H. Fang, J H. Yin, W C. Yan, X X. Tu, M X. Liu, H. Zhang, Z D. Li, Z. Gao, M. Lu, H. Wang, Y J. and Wang, X P. (2023). VqWRKY56 interacts with VqbZIPC22 in grapevine to promote proanthocyanidin biosynthesis and increase resistance to powdery mildew. New Phytologist, 237, 1856-1875.
Wang, Y C. Qian, W J. Li, N N. Hao, X Y. Wang, L. Xiao, B. Wang X C. Yang, Y J. (2016). Metabolic changes of caffeine in tea plant (Camellia sinensis (L.) O. Kuntze) as defense response to Colletotrichum fructicola. Journal of Agricultural and Food Chemistry, 64, 6685-6693.
Wagner, U. Edwards, R. Dixon, D P. and Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology, 49, 515–532.
Wasternack, C. and Hause, B. (2019). The missing link in jasmonic acid biosynthesis. Nature Plants, 5, 776-777.
Wu, L Q. Zhu, L W. Hen, W. Ye, Z F. Liu, G. and Shi, S X. (2010). Identification of Dangshan pear anthracnose pathogen and screening fungicides against it. Scientia Agricultura Sinica, 43, 3750-3758.
Yang, J. Chen, Y Z. W, Y X. Tao, L. Zhang, Y D. Wang, S R. Zhang, G C. and Zhang, J. (2021). Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pesticide Biochemistry and Physiology, 175, 104859.
Yang, J L. Sun, C. Fu, D. and Yu, T. (2017). Test for L -glutamate inhibition of growth of Alternaria alternata by inducing resistance in tomato fruit. Food Chemistry, 230, 145-153.
Yang, Q. He, Y J. Kabahuma, M. Chaya, T. Kelly, A. Borrego, E. Yang, B. Kasmi F E. Yang, L. Teixeira, P. Kolkman, J. Nelson R. Kolomiets, M. Dangl, J L. Wisser, R. Caplan, J. Lauter, N. and Balint-Kurti, P. (2017). A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics, 49, 1364-1372.
Yu, D. Wei, W. Fan, Z Q. Chen, J Y. You, Y L. Huang, W D. and Zhan, J C. (2023). VabHLH137 promotes proanthocyanidin and anthocyanin biosynthesis and enhances resistance to Colletotrichum gloeosporioides in grapevine. Horticulture Research, 10, uhac261.
Zhang, J. He, L. Guo, C. Liu, Z Y. Kaliaperumal, K. Zhong, B L. and Jiang, Y M. (2022). Evaluation of Aspergillus aculeatus GC-09 for the biological control of citrus blue mold caused by Penicillium italicum. Fungal Biology, 126, 201-212.
Zhang, L X. Bao, H B. Meng, F L. Ren, Y. and Tian, C M. (2023). Transcriptome and metabolome reveal the role of flavonoids in poplar resistance to poplar anthracnose. Industrial Crops and Products, 197.
Zhao, T. Huang, C B. Li, N. Ge, Y Q. Wang, L. Tang, Y J. Wang, Y J. Li, Y. and Zhang, C H. (2024). Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew. Plant Physiology, 1, kiae249.
Zhu, L M. Yang, Q. Yu, X M. Fu, X J. Jin, H X. and Yuan, F J. (2022). Transcriptomic and metabolomic analyses reveal a potential mechanism to improve soybean resistance to anthracnose. Frontiers in Plant Science, 13, 850829.
|