Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3757-3771    DOI: 10.1016/j.jia.2024.03.006
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide analysis of AhCN genes reveals that AhCN34 is involved in bacterial wilt resistance in peanut
Kai Zhao, Yanzhe Li, Zhan Li, Zenghui Cao, Xingli Ma, Rui Ren, Kuopeng Wang, Lin Meng, Yang Yang, Miaomiao Yao, Yang Yang, Xiaoxuan Wang, Jinzhi Wang, Sasa Hu, Yaoyao Li, Qian Ma, Di Cao, Kunkun Zhao, Ding Qiu, Fangping Gong, Zhongfeng Li, Xingguo Zhang, Dongmei Yin#
College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou 450046, China
 Highlights 
Identified 150 AhCN genes in peanut; classified into nine subfamilies with conserved defense-linked features.
AhCN34 is upregulated in resistant peanuts under bacterial wilt and phytohormone (salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA)) stress.
Overexpression of AhCN34 enhances bacterial wilt resistance by reducing disease symptoms and cell death.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
花生(Arachis hypogaea L.)青枯病是一种严重威胁花生产量和品质的细菌性土传病害。核苷酸结合富亮氨酸重复序列(NBS-LRR)蛋白是一类植物特异性免疫受体,可识别病原体分泌的效应分子并激活免疫反应以抵抗病原体侵染。然而,在花生中AhCN基因(CN是一类缺乏LRR结构域的NLR基因)的确切功能尚不清楚。本研究通过系统进化发育分析,共鉴定出150个AhCN基因,划分为9个亚家族,发现AhCN基因表现出高度保守的结构特征,并参与植物激素信号转导和防御反应。接种青枯菌后,高抗性花生品种‘H108’在株高、主茎粗和鲜重等生理指标上显著高于感病品种‘H107’,这可能是由于青枯菌在维管束中的增殖和扩散受到抑制造成的。在遭受青枯菌侵染和植物激素处理后,q-PCR验证显示,与H107相比,AhCN34在H108中显著上调。重要的是,在叶片中过表达AhCN34增强了花生对青枯病的抗性。以上结果表明,AhCN34在花生抗病育种中具备一定的潜力,为今后花生高效遗传育种提供理论依据。


Abstract  

Peanut (Arachis hypogaea L.) bacterial wilt (BW) is a devastating soil-borne disease caused by Ralstonia solanacearum (RS) that poses a significant threat to peanut yield and quality.  Nucleotide-binding leucine-rich repeat (NBS-LRR) proteins are a class of plant-specific immune receptors that recognize pathogen-secreted effector molecules and activate immune responses to resist pathogen infections.  However, the precise functions of AhCN genes (where CN is a class of nucleotide-binding site, leucine-rich repeat receptor (NLR) genes that lack LRR structural domains) in peanut plants are not fully understood.  In this study, a total of 150 AhCN genes were identified and classified into nine subfamilies based on a systematic phylogenetic analysis.  The AhCN genes showed highly conserved structural features, and the promoter cis-elements indicated involvement in plant hormone signaling and defense responses.  After inoculation with RS, the highly resistant peanut variety ‘H108’ significantly outperformed the susceptible variety ‘H107’ based on physiological indicators such as plant height, main stem diameter, and fresh weight, likely due to the inhibition of bacterial proliferation and diffusion in the stem vascular bundle.  AhCN34 was found to be significantly upregulated in ‘H108’ compared to ‘H107’ during plant infection and in response to treatments with each of three plant hormones.  Importantly, AhCN34 overexpression in peanut leaves enhanced their resistance to BW.  These findings demonstrate the great potential of AhCN34 for applications in peanut resistance breeding.  Our identification and characterization of the AhCN genes provide insights into the mechanisms underlying BW resistance in peanut and can inform future research into genetic methods of improving BW resistance in peanut.

Keywords:  peanut       bacterial wilt        resistance        NLR genes        disease  
Received: 24 September 2023   Online: 02 March 2024   Accepted: 17 January 2024
Fund: 
This work was supported by the grants from the National Natural Science Foundation of China (NSFC)-Henan United Fund (U22A20475 and U1704232), the Key Scientific and Technological Project of Henan Province, China (221111110500, 161100111000, and HARS-22-05-G1), the Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (2018JR0001), the Henan Agricultural University High Level Talent Special Support Fund, China (30501418), and the Key Scientific Research Project in Colleges and Universities of Henan Province, China (21A210018).
About author:  Kai Zhao, E-mail: zhaok816@163.com; #Correspondence Dongmei Yin, Tel: +86-371-56990188, E-mail: yindm@henau.edu.cn

Cite this article: 

Kai Zhao, Yanzhe Li, Zhan Li, Zenghui Cao, Xingli Ma, Rui Ren, Kuopeng Wang, Lin Meng, Yang Yang, Miaomiao Yao, Yang Yang, Xiaoxuan Wang, Jinzhi Wang, Sasa Hu, Yaoyao Li, Qian Ma, Di Cao, Kunkun Zhao, Ding Qiu, Fangping Gong, Zhongfeng Li, Xingguo Zhang, Dongmei Yin. 2025. Genome-wide analysis of AhCN genes reveals that AhCN34 is involved in bacterial wilt resistance in peanut. Journal of Integrative Agriculture, 24(10): 3757-3771.

Álvarez B, Biosca E G, López M M. 2010. On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. Current ResearchTechnology and Education Topics in Applied Microbiology and Microbial Biotechnology1, 267–279.

Baggs E, Dagdas G, Krasileva K V. 2017. NLR diversity, helpers and integrated domains: Making sense of the NLR IDentity. Current Opinion in Plant Biology38, 59–67.

Cai H, Wang W, Rui L, Han L, Luo M, Liu N, Tang D. 2021. The TIR-NBS protein TN13 associates with the CC-NBS-LRR resistance protein RPS5 and contributes to RPS5-triggered immunity in ArabidopsisPlant Journal107, 775–786.

Cao P, Chen J L, Li N N, Zhang S X, Wang R B, Li B J, Liu P Q, An Y Y, Zhang M X. 2023. Seedling Petri-dish inoculation method: A robust, easy-to-use and reliable assay for studying plant-Ralstonia solanacearum interactions. Journal of Integrative Agriculture22, 3709–3719.

Chen T, Yang W, Zhang H, Zhu B, Zeng R, Wang X, Wang S, Wang L, Qi H, Lan Y, Zhang L. 2020. Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data. Computers and Electronics in Agriculture177, 105708.

Chen Y, Ren X, Zhou X, Huang L, Yan L, Lei Y, Liao B, Huang J, Huang S, Wei W, Jiang H. 2014. Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearumBMC Genomics15, 1–16.

Collier S M, Hamel L P, Moffett P. 2011. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Molecular Plant-Microbe Interactions24, 918–931.

Dazy M, Masfaraud J F, Férard J F. 2009. Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica HedwChemosphere75, 297–302.

Deslandes L, Olivier J, Peeters N, Feng D X, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the United States of America100, 8024–8029.

Dong Z, Ma C, Tian X, Zhu C, Wang G, Lv Y, Friebe B, Li H, Liu W. 2020. Genome-wide impacts of alien chromatin introgression on wheat gene transcriptions. Scientific Reports10, 1–12.

Elsayed T R, Jacquiod S, Nour E H, Sørensen S J, Smalla K. 2020. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, Antagonists, the Indigenous rhizosphere microbiota, and Ralstonia solanacearumFrontiers in Microbiology10, 1–15.

FAO (Food and Agriculture Organization). 2021. Online statistical database: Food balance. FAOSTAT. [2022-11-9]. https://www.fao.org/faostat/zh/#data/QCL

Gao H, Narayanan N N, Ellison L, Bhattacharyya M K. 2005. Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode Phytophthora resistance in soybean. Molecular Plant-Microbe Interactions18, 1035–1045.

Godiard L, Sauviac L, Torii K U, Grenon O, Mangin B, Grimsley N H, Marco Y. 2003. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant Journal36, 353–365.

Griebel T, Maekawa T, Parker J E. 2014. NOD-like receptor cooperativity in effector-triggered immunity. Trends in Immunology35, 562–570.

Gururani M A, Venkatesh J, Upadhyaya C P, Nookaraju A, Pandey S K, Park S W. 2012. Plant disease resistance genes: Current status and future directions. Physiological and Molecular Plant Pathology78, 51–65.

Hammond-Kosack K E, Parker J E. 2003. Deciphering plant–pathogen communication: Fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology14, 177–193.

He M, Cui S, Yang X, Mu G, Chen H, Liu L. 2017. Selection of suitable reference genes for abiotic stress-responsive gene expression studies in peanut by real-time quantitative PCR. Electronic Journal of Biotechnology28, 76–86.

Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, Macho A P, Ding W, Liao B. 2017. Bacterial wilt in China: History, current status, and future perspectives. Frontiers in Plant Science8, 1–10.

Kourelis J, Sakai T, Adachi H, Kamoun S. 2021. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biology19, 1–26.

Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. 2009. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics181, 1627–1638.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods25, 402–408.

Lowe-Power T M, Khokhani D, Allen C. 2018. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends in Microbiology26, 929–942.

Luo H, Pandey M K, Khan A W, Wu B, Guo J, Ren X, Zhou X, Chen Y, Chen W, Huang L, Liu N, Lei Y, Liao B, Varshney R K. 2019. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.). Plant Biotechnology Journal17, 2356–2369.

Macho A P, Zipfel C. 2015. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Current Opinion in Microbiology23, 14–22.

Maruta N, Burdett H, Lim B Y J, Hu X, Desa S, Manik M K, Kobe B. 2022. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics74, 5–26.

Mestre P, Baulcombe D C. 2006. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell18, 491–501.

Meyers B C, Kozik A, Griego A, Kuang H, Michelmore R W. 2003. Genome-wide analysis of NBS-LRR-encoding genes in ArabidopsisPlant Cell15, 809–834.

Nishimura M T, Anderson R G, Cherkis K A, Law T F, Liu Q L, Machius M, Nimchuk Z L, Yang L, Chung E H, El Kasmi F, Hyunh M, Nishimura E O, Sondek J E, Dangl J L. 2017. TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in ArabidopsisProceedings of the National Academy of Sciences of the United States of America114, E2053–E2062.

Parry D A D, Fraser R D B, Squire J M. 2008. Fifty years of coiled-coils and α-helical bundles: A close relationship between sequence and structure. Journal of Structural Biology163, 258–269.

Pieterse C M J, Van Der Does D, Zamioudis C, Leon-Reyes A, Van Wees S C M. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology28, 489–521.

Peng W F, Jiang H F, Ren X P, Lv J W, Zhao X Y, Huang L. 2010. Construction of peanut AFLP genetic map and QTL analysis of bacterial wilt resistance. North China Agricultural Journal25, 81–86.

Ren X P, Zhang X J, Liao B S, Lei Y, Huang J Q, Chen Y N, Jiang H F. 2010, Analysis of genetic diversity in ICRISAT mini core collection of peanut (Arachis hypogaea L.) by SSR markers. Scientia Agricultura Sinica43, 2848–2858. (in Chinese)

Rairdan G J, Collier S M, Sacco M A, Baldwin T T, Boettrich T, Moffett P. 2008. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell20, 739–751.

Robert-Seilaniantz A, Grant M, Jones J D G. 2011. Hormone crosstalk in plant disease and defense: More than just JASMONATE-SALICYLATE antagonism. Annual Review of Phytopathology49, 317–343.

Schreiber K J, Bentham A, Williams S J, Kobe B, Staskawicz B J. 2016. Multiple domain associations within the Arabidopsis immune receptor RPP1 regulate the activation of programmed cell death. PLoS Pathogens12, 1–26.

Sheng Y T, Yu X L, Mao T T, Zhang J, Guo X T, Song Z Z, Zhang H X. 2022. Genome sequence data of Leptosphaerulina arachidicola, a causal agent of peanut scorch spot in China. Plant Disease106, 748–750.

Takken F L, Albrecht M, Tameling W I L. 2006. Resistance proteins: Molecular switches of plant defence. Current Opinion in Plant Biology9, 383–390.

Takken F L, Goverse A. 2012. How to build a pathogen detector: Structural basis of NB-LRR function. Current Opinion in Plant Biology15, 375–384.

Tameling W I L, Baulcombe D C. 2007. Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to potato virus X. Plant Cell19, 1682–1694.

Wang L, Zhou X, Ren X, Huang L, Luo H, Chen Y, Chen W, Liu N, Liao B, Lei Y, Yan L, Shen J, Jiang H. 2018. A major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut Yuanza 9102 derived population. Frontiers in Genetics9, 1–13.

Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner J G. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8Science291, 118–120.

Yin J J, Xiong J, Xu L T, Chen X W, Li W T. 2022. Recent advances in plant immunity with cell death: A review. Journal of Integrative Agriculture21, 610–620.

Yu G, Xian L, Xue H, Yu W, Rufian J S, Sang Y, Morcillo R J L, Wang Y, Macho A P. 2020. A bacterial effector protein prevents mapk-mediated phosphorylation of sgt1 to suppress plant immunity. PLoS Pathogens16, 1–30.

Zhang C. 2010. Study on molecular basis of resistence to Ralstonia solanacearum in peanut. MSc thesis, Fujian Agriculture and Forestry University, Fujian, China. (in Chinese)

Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. 2017. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnology Journal15, 39–55.

Zhang D D, Guo X J, Wang Y J, Gao T G, Zhu B C. 2017. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. triticiLetters in Applied Microbiology65, 512–519.

Zhao K, Ren R, Ma X L, Zhao K K, Qu C X, Cao D, Ma Q, Ma Y Y, Gong F P, Li Z F, Zhang X G, Yin D M. 2022. Genome-wide investigation of defensin genes in peanut (Arachis hypogaea L.) reveals AhDef2.2 conferring resistance to bacterial wilt. The Crop Journal10, 809–819.

Zhao Y, Zhang C, Chen H, Yuan M, Nipper R, Prakash C S, Zhuang W, He G. 2016. QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.). Molecular Breeding36, 1–11.

Zhou T, Wang Y, Chen J Q, Araki H, Jing Z, Jiang K, Shen J, Tian D. 2004. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Molecular Genetics and Genomics271, 402–415.

Zhuang W J, Zhang C, Chen H, Zhuang R R, Chen Y T, Deng Y, Cai T C, Wang S Y, Liu Q Z, Tang R H, Shan S H, Pan R L, Chen L S, Dietz K J. 2019. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. Journal of Experimental Botany70, 5407–5421.

[1] Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. Identification of QTLs for plant height and branching-related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2511-2524.
[2] Bingyan Huang, Hua Liu, Yuanjin Fang, Lijuan Miao, Li Qin, Ziqi Sun, Feiyan Qi, Lei Chen, Fengye Zhang, Shuanzhu Li, Qinghuan Zheng, Lei Shi, Jihua Wu, Wenzhao Dong, Xinyou Zhang. Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2096-2105.
[3] Chenyu Zhang, Hongli Li, Piao Mei, Yuanyuan Ye, Dingding Liu, Yang Gong, Haoran Liu, Mingzhe Yao, Chunlei Ma. QTL detection and candidate gene analysis of the anthracnose resistance locus in tea plant (Camellia sinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2240-2250.
[4] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[5] Kaixin Gu, Ran Wei, Yidan Sun, Xiaoxin Duan, Jing Gao, Jianxin Wang, Yiping Hou, Mingguo Zhou, Xiushi Song. Point mutations of Dicer2 conferred Fusarium asiaticum resistance to RNAi-related biopesticide[J]. >Journal of Integrative Agriculture, 2025, 24(2): 623-637.
[6] Guanghui Chen, Li Sheng, Lijun Wu, Liang Yin, Shuangling Li, Hongfeng Wang, Xiao Jiang, Heng Wang, Yanmao Shi, Fudong Zhan, Xiaoyuan Chi, Chunjuan Qu, Yan Ren, Mei Yuan. Identification of novel QTLs for resistance to late leaf spot in peanut by SNP array and QTL-seq analyses[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3772-3788.
[7] Xiaomei Tang, Yue Wang, Yuqing Guo, Luoluo Xie, Wei Song, Ziwen Xiao, Ruichang Yin, Zhe Ye, Xueqiu Sun, Wenming Wang, Lun Liu, Zhenfeng Ye, Zhenghui Gao, Bing Jia. Integrated transcriptomic and metabolomic analyses reveal a novel mechanism of resistance to Colletotrichum fructicola in pear[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3851-3865.
[8] Fei Xiang, Zhenyuan Li, Yichen Zheng, Caixia Ding, Benu Adhikari, Xiaojie Ma, Xuebing Xu, Jinjin Zhu, Bello Zaki Abubakar, Aimin Shi, Hui Hu, Qiang Wang. Characterization and correlation of engineering properties with microstructure in peanuts: A microscopic to macroscopic analysis[J]. >Journal of Integrative Agriculture, 2025, 24(1): 339-352.
[9] Bo Jiao, Xin Guo, Yiying Chen, Shah Faisal, Wenchao Liu, Xiaojie Ma, Bicong Wu, Guangyue Ren, Qiang Wang. Low-fat microwaved peanut snacks production: Effect of defatting treatment on structural characteristics, texture, color, and nutrition[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2491-2502.
[10] Song Wan, Yongxin Lin, Hangwei Hu, Milin Deng, Jianbo Fan, Jizheng He. Excessive manure application stimulates nitrogen cycling but only weakly promotes crop yields in an acidic Ultisol: Results from a 20-year field experiment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2434-2445.
[11] Xiaohui Wu, Mengyuan Zhang, Zheng Zheng, Ziqi Sun, Feiyan Qi, Hua Liu, Juan Wang, Mengmeng Wang, Ruifang Zhao, Yue Wu, Xiao Wang, Hongfei Liu, Wenzhao Dong, Xinyou Zhang.

Fine-mapping of a candidate gene for web blotch resistance in Arachis hypogaea L. [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1494-1506.

[12] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[13] LIU Zhu, NAN Zhen-wu, LIN Song-ming, YU Hai-qiu, XIE Li-yong, MENG Wei-wei, ZHANG Zheng, WAN Shu-bo. Millet/peanut intercropping at a moderate N rate increases crop productivity and N use efficiency, as well as economic benefits, under rain-fed conditions[J]. >Journal of Integrative Agriculture, 2023, 22(3): 738-751.
[14] MA Yu-xin, ZHOU Zhi-jun, CAO Hong-zhe, ZHOU Fan, SI He-long, ZANG Jin-ping, XING Ji-hong, ZHANG Kang, DONG Jin-gao. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3458-3473.
[15] ZHU Peng-fei, YANG Qing-li, ZHAO Hai-yan. Identification of peanut oil origins based on Raman spectroscopy combined with multivariate data analysis methods[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2777-2785.
No Suggested Reading articles found!