Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3458-3473    DOI: 10.1016/j.jia.2022.12.014
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance

MA Yu-xin1, 2*, ZHOU Zhi-jun4*, CAO Hong-zhe1, 2, ZHOU Fan1, 2, SI He-long2, ZANG Jin-ping2, XING Ji-hong1, 2, 3#, ZHANG Kang1, 2, 3#, DONG Jin-gao1, 2#

1 State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, P.R.China
2 Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, P.R.China
3 Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding 071000, P.R.China
4 Experimental Training Center of Hebei Agricultural University, Hebei Agricultural University, Baoding 071000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

糖是植物生长发育中不可或缺的生长能源,在通过疏水屏障时需要糖转运蛋白(STP)的帮助。当玉米受到病原体侵染时,糖的含量会产生波动,但是糖转运蛋白如何在玉米抗病过程中发挥作用还没有清晰地研究。为了鉴定玉米(Zea mays)糖转运蛋白家族成员并分析其在不同组织和生理条件下的表达规律,本研究利用生物信息学方法对玉米基因组中糖转运蛋白编码基因进行了系统性鉴定和分析,利用同源性分析鉴定玉米糖转运蛋白编码基因,利用保守结构域分析对糖转运蛋白进行结构域鉴定,利用转录组数据对糖转运蛋白编码基因进行表达规律分析,利用激素处理试验,验证了该家族成员在激素处理下的表达规律,并利用病斑侵染突变体,验证了该家族成员ZmSTP2ZmSTP20具有抗病性。结果表明,玉米糖转运蛋白家族包含24个成员,均预测分布在细胞膜上,具有高度保守的跨膜转运结构域玉米糖转运蛋白编码基因在不同组织中和胁迫下表达水平有明显差异,其中ZmSTP2ZmSTP20在禾谷镰孢Fusarium graminearum侵染后表达水平持续上升,通过对zmstp2zmstp20突变体进行抗病分析,发现接种玉米圆斑菌(Cochliobolus carbonum)、玉米大斑菌(Setosphaeria turcica)、玉米小斑菌(Cochliobolus heterostrophus)和禾谷镰孢(F. graminearum)后,zmstp2zmstp20突变体的病斑面积显著高于野生型B73。本研究在全基因组层面对玉米糖转运蛋白编码基因进行了系统性鉴定和分析,明确了玉米糖转运蛋白的编码基因,揭示了糖转运蛋白编码基因在玉米不同组织及生物和非生物胁迫中的表达规律,为进一步阐明其功能奠定了重要的理论基础。



Abstract  

Sugar is an indispensable source of energy for plant growth and development, and it requires the participation of sugar transporter proteins (STPs) for crossing the hydrophobic barrier in plants.  Here, we systematically identified the genes encoding sugar transporters in the genome of maize (Zea mays L.), analyzed their expression patterns under different conditions, and determined their functions in disease resistance.  The results showed that the mazie sugar transporter family contained 24 members, all of which were predicted to be distributed on the cell membrane and had a highly conserved transmembrane transport domain.  The tissue-specific expression of the maize sugar transporter genes was analyzed, and the expression level of these genes was found to be significantly different in different tissues.  The analysis of biotic and abiotic stress data showed that the expression levels of the sugar transporter genes changed significantly under different stress factors.  The expression levels of ZmSTP2 and ZmSTP20 continued to increase following Fusarium graminearum infection.  By performing disease resistance analysis of zmstp2 and zmstp20 mutants, we found that after inoculation with Cochliobolus carbonum, Setosphaeria turcica, Cochliobolus heterostrophus, and Fgraminearum, the lesion area of the mutants was significantly higher than that of the wild-type B73 plant.  In this study, the genes encoding sugar transporters in maize were systematically identified and analyzed at the whole genome level.  The expression patterns of the sugar transporter-encoding genes in different tissues of maize and under biotic and abiotic stresses were revealed, which laid an important theoretical foundation for further elucidation of their functions.

Keywords:  maize       sugar transporter        gene expression        disease resistance  
Received: 16 September 2022   Accepted: 09 November 2022
Fund: 

This work was supported by the National Natural Science Foundation of China (31901864), the State Key Laboratory of North China Crop Improvement and Regulation (NCCIR2020ZZ-9), the Research Project of Science and Technology in Universities of Hebei Province (BJK2022006), earmarked fund for China Agriculture Research System (CARS-02), the Key Research and Development Projects of Hebei (19226503D), and the Central Government Guides Local Science and Technology Development Projects (216Z6501G, 216Z6502G).

About author:  #Correspondence XING Ji-hong, E-mail: xingjihong2000@126.com; ZHANG Kang, E-mail: zk7588@163.com; DONG Jin-gao, E-mail: dongjingao@126.com * These authors contributed equally to this study.

Cite this article: 

MA Yu-xin, ZHOU Zhi-jun, CAO Hong-zhe, ZHOU Fan, SI He-long, ZANG Jin-ping, XING Ji-hong, ZHANG Kang, DONG Jin-gao. 2023. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance. Journal of Integrative Agriculture, 22(11): 3458-3473.

Bihmidine S, Julius B T, Dweikat I, Braun D M. 2016. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems. Plant Signaling & Behavior11, e1117721.

Buttner M. 2010. The Arabidopsis sugar transporter (AtSTP) family: An update. Plant Biology12, 35–41.

Cao H, Guo S, Xu Y, Jiang K, Jones A M, Chong K. 2011. Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa). Journal of Experimental Botany62, 4595–4604.

Chardon F, Bedu M, Calenge F, Klemens P W, Spinner L, Gilles C, Chietera G, Léran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus H E, Daniel-Vedele F, Krapp A. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in ArabidopsisCurrent Biology23, 697–702.

Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature468, 527–532.

Cho J I, Burla B, Lee D W, Ryoo N, Hong S W, Kim H B, Eom J S, Choi S B, Cho M H, Bhoo S H, Hahn T R, Neuhaus T R, Neuhaus H E, Martinoia E, Jeon J S. 2010. Expression analysis and functional characterization of the monosaccharide transporters, OsTMTs, involving vacuolar sugar transport in rice (Oryza sativa). New Phytologist186, 657–668.

Chong J, Piron M C, Meyer S, Merdinoglu D, Bertsch C, Mestre P. 2014. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinereaJournal of Experimental Botany65, 6589–6601.

Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A, Park Y J, Bennetzen J L, Zhang Q, Wang S. 2006. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theoretical and Applied Genetics112, 455–461.

Cohn M, Bart R S, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou B H, Frommer W B, Lahaye T, Staskawicz B J. 2014. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Molecular Plant Microbe Interactions27, 1186–1198.

Cordoba E, Aceves-Zamudio D L, Hernández-Bernal A F, Ramos-Vega M, León P. 2015. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thalianaJournal of Experimental Botany66, 147–159.

Duan C, Song F, Sun S, Guo C, Zhu Z, Wang X. 2019. Characterization and molecular mapping of two novel genes resistant to Pythium stalk rot in maize. Phytopathology109, 804–809.

Farhan A, Yan J B. 2012. Disease resistance in maize and the role of molecular breeding in defending against global threat. Journal of Integrative Plant Biology54, 134–151.

Finn R D, Clements J, Arndt W, Miller B L, Wheeler T J, Schreiber F, Bateman A, Eddy S R. 2015. HMMER web server: 2015 update. Nucleic Acids Research43, W30–W38.

Flütsch S, Nigro A, Conci F, Fajkus J, Thalmann M, Trtílek M, Panzarová K, Santelia D. 2020. Glucose uptake to guard cells via STP transporters provides carbon sources for stomatal opening and plant growth. European Molecular Biology Organization Reports21, e49719.

Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, Chen J. 2020. RIdeogram: Drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ6, e251.

Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer W B, Yang B, White F F, Wang N, Jones J B. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proceedings of the National Academy of Sciences of the United States of America111, e521–e529.

Huai B Y, Yuan P, Ma X X, Zhang X R, Jiang L H, Zheng P J, Yao M H, Chen Z Y, Chen L Y, Shen Q H, Kang Z S, Liu J. 2022. Sugar transporter TaSTP3 activation by TaWRKY19/61/82 enhances stripe rust susceptibility in wheat. The New Phytologist236, 266–282.

Jacob A, Lancaster J, Buhler J, Harris B, Chamberlain R D. 2008. Mercury BLASTP: Accelerating protein sequence alignment. Transactions on Reconfigurable Technology and Systems1, 9.

Kong W, An B, Zhang Y, Yang J, Li S, Sun T, Li Y. 2019. Sugar transporter proteins (STPs) in gramineae crops: Comparative analysis, phylogeny, evolution, and expression profiling. Cells8, 560.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33, 1870–1874.

Leach K A, Tran T M, Slewinski T L, Meeley R B, Braun D M. 2017. Sucrose transporter2 contributes to maize growth, development, and crop yield. Journal of Integrative Plant Biology59, 390–408.

Lemoine R, Camera S L, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J L, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M. 2013. Source to sink transport and regulation by environmental factors. Frontiers in Plant Science4, 272.

Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thévenot P, La Camera S. 2014. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinereaPlant Molecular Biology85, 473–484.

Li D, Fu F, Zhang H, Song F. 2015. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics16, 771.

Li Y, Wang Y, Zhang H, Zhang Q, Zhai H, Liu Q, He S. 2017. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporumFrontiers in Plant Science8, 197.

Liu Q, Dang H, Chen Z, Wu J, Chen Y, Chen S, Luo L. 2018. Genome-wide identification, expression, and functional analysis of the sugar transporter gene family in cassava (Manihot esculenta). International Journal of Molecular Sciences19, 987.

Lu J, Sun M H, Ma Q J, Kang H, Liu Y J, Hao Y J, You C X. 2019. MdSWEET17, a sugar transporter in apple, enhances drought tolerance in tomato. Journal of Integrative Agriculture18, 2041–2051.

Lu X D, Liu J S, Ren W, Yang Q, Chai Z G, Chen R M, Wang L, Zhao J, Lang Z H, Wang H Y, Fan Y L, Zhao J R, Zhang C Y. 2018. Gene-indexed mutations in maize. Molecular Plant11, 496–504.

Nakad M, Domec J C, Sevanto S, Katul G. 2022. Radial-axial transport coordination enhances sugar translocation in the phloem vasculature of plants. Plant Physiology189, 2061–2071.

Nour-Eldin H H, Nørholm M H, Halkier B A. 2006. Screening for plant transporter function by expressing a normalized Arabidopsis full-length cDNA library in Xenopus oocytesPlant Methods, 2, 17.

Otori K, Tanabe N, Tamoi M, Shigeoka S. 2019. Sugar Transporter Protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in ArabidopsisBioscience, Biotechnology and Biochemistry83, 472–481.

Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols11, 1650–1667.

Poschet G, Hannich B, Büttner M. 2010. Identification and characterization of AtSTP14, a novel galactose transporter from ArabidopsisPlant and Cell Physiology51, 1571–1580.

Qin J X, Jiang Y J, Lu Y Z, Zhao P, Wu B J, Li H X, Wang Y, Xu S B, Sun Q X, Liu Z S. 2020. Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.). Journal of Integrative Agriculture19, 1704–1720.

Rashid Z, Sofi M, Harlapur S I, Kachapur R M, Dar Z A, Singh P K, Zaidi P H, Vivek, B S, Nair S K. 2020. Genome-wide association studies in tropical maize germplasm reveal novel and known genomic regions for resistance to Northern corn leaf blight. Scientific Reports10, 21949.

Redinbaugh M G, Stewart L R. 2018. Maize lethal necrosis: An emerging, synergistic viral disease. Annual Review of Virology29, 301–322.

Rozenn L H, Lara S, Patrick A W K, Dipankar C, Federica de M, Françoise V, Nelly W ,Rémi L, Benoit P, Carine G, Evelyne T, Salem C, Grégory M, H. Ekkehard N, Sylvie D, Catherine B. 2015. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in ArabidopsisMolecular Plant8, 1687–1690.

Scholz S J, Büttner M, Sauer N. 2003. AtSTP6, a new pollen-specific H+-monosaccharide symporter from ArabidopsisPlant Physiology131, 70–77.

Singh N, Ujinwal M, Langyan S, Sayyed R Z, Enshasy H E, Kenawy A A. 2022. Genome-wide exploration of sugar transporter (sweet) family proteins in fabaceae for sustainable protein and carbon source. PLoS ONE17, e0268154.

Tran T M, Hampton C S, Brossard T W, Harmata M, Robertson J D, Jurisson S S, Braun D M. 2017. In vivo transport of three radioactive [18F]-fluorinated deoxysucrose analogs by the maize sucrose transporter ZmSUT1. Plant Physiology and Biochemistry115, 1–11.

Truernit E, Stadler R, Baier K, Sauer N. 1999. A male gametophyte-specific monosaccharide transporter in ArabidopsisPlant Journal17, 191–201.

Wang Y, Zhang W Z, Song L F, Zou J J, Su Z, Wu W H. 2008. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in ArabidopsisPlant Physiology148, 1201–1211.

Xia H F, Gao W, Qu J, Dai, L Q, Gao Y, Lu S, Zhang M, Wang P W, Wang T Y. 2020. Genetic mapping of northern corn leaf blight-resistant quantitative trait loci in maize. Medicine (Baltimore), 99, e21326.

Yan N. 2013. Structural advances for the major facilitator superfamily (MFS) transporters. Trends in Biochemical Sciences38, 151–159.

Yang B, Sugio A, White F F. 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences of the United States of America103, 10503–10508.

Yu J, Kim K H. 2020. Exploration of the interactions between mycoviruses and Fusarium graminearumAdvances in Virus Research106, 123–144.

Zeng F L, Meng Y N, Hao Z M, Li P, Zhai W B, Shen S, Cao Z Y, Dong J G. 2020. Setosphaeria turcica ATR turns off appressorium-mediated maize infection and triggers melanin-involved self-protection in response to genotoxic stress. Molecular Plant Pathology21, 401–414.

Zhang J, Jia X, Wang G F, Ma S, Wang S, Yang Q, Chen X, Zhang Y, Lyu Y, Wang X, Shi J, Zhao Y, Chen Y, Wu L. 2022. Ascorbate peroxidase 1 confers resistance to southern corn leaf blight in maize. Journal of Integrative Plant Biology64, 1196–1211.

Zhang J X, Wu Y X, Ho H, Zhang H, He P F, He Y Q. 2014. BZcon1, a SANT/Myb-type gene involved in the conidiation of Cochliobolus carbonumGenes Genomes Genetics4, 1445–1453.

Zhang W, Wang S Y, Yu F W, Tang J, Yu L, Wang H, Li J B. 2019. Genome-wide identification and expression profiling of sugar transporter protein (STP) family genes in cabbage (Brassica oleracea var. capitata L.) reveals their involvement in clubroot disease responses. Genes10, 71.

Zuchman R, Koren R, Horwitz B A. 2021. Developmental roles of the hog1 protein phosphatases of the maize pathogen Cochliobolus heterostrophusJournal of Fungi7, 83.

[1] YUE Kai, LI Ling-ling, XIE Jun-hong, Zechariah EFFAH, Sumera ANWAR, WANG Lin-lin, MENG Hao-feng, LI Lin-zhi. Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2673-2686.
[2] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[3] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[4] Tiago SILVA, Ying NIU, Tyler TOWLES, Sebe BROWN, Graham P. HEAD, Wade WALKER, Fangneng HUANG. Selection, effective dominance, and completeness of Cry1A.105/Cry2Ab2 dual-protein resistance in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2151-2161.
[5] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[6] SONG Chao-yu, ZHANG Fan, LI Jian-sheng, XIE Jin-yi, YANG Chen, ZHOU Hang, ZHANG Jun-xiong. Detection of maize tassels for UAV remote sensing image with an improved YOLOX Model[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1671-1683.
[7] WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua. Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1896-1908.
[8] ZHANG Miao-miao, DANG Peng-fei, LI Yü-ze, QIN Xiao-liang, Kadambot-H. M. SIDDIQUE. Better tillage selection before ridge–furrow film mulching can facilitate root proliferation, increase nitrogen accumulation, translocation, grain yield of maize in a semiarid area[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1658-1670.
[9] ZHAO Hai-liang, QIN Yao, XIAO Zi-yi, SUN Qin, GONG Dian-ming, QIU Fa-zhan. Revealing the process of storage protein rebalancing in high quality protein maize by proteomic and transcriptomic[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1308-1323.
[10] WANG Jin-bin, XIE Jun-hong, LI Ling-ling, ADINGO Samuel. Review on the fully mulched ridge–furrow system for sustainable maize production on the semi-arid Loess Plateau[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1277-1290.
[11] SHI Wen-xuan, ZHANG Qian, LI Lan-tao, TAN Jin-fang, XIE Ruo-han, WANG Yi-lun. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1184-1198.
[12] ZHANG Bing-chao, HU Han, GUO Zheng-yu, GONG Shuai, SHEN Si, LIAO Shu-hua, WANG Xin, ZHOU Shun-li, ZHANG Zhong-dong. Plastic-film-side seeding, as an alternative to traditional film mulching, improves yield stability and income in maize production in semi-arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1021-1034.
[13] GAO Xing, LI Yong-xiang, YANG Ming-tao, LI Chun-hui, SONG Yan-chun, WANG Tian-yu, LI Yu, SHI Yun-su. Changes in grain-filling characteristics of single-cross maize hybrids released in China from 1964 to 2014[J]. >Journal of Integrative Agriculture, 2023, 22(3): 691-700.
[14] Irshad AHMAD, Maksat BATYRBEK, Khushnuma IKRAM, Shakeel AHMAD, Muhammad KAMRAN, Misbah, Raham Sher KHAN, HOU Fu-jiang, HAN Qing-fang.

Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density [J]. >Journal of Integrative Agriculture, 2023, 22(2): 417-433.

[15] XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. >Journal of Integrative Agriculture, 2023, 22(2): 371-388.
No Suggested Reading articles found!