Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance
MA Yu-xin1, 2*, ZHOU Zhi-jun4*, CAO Hong-zhe12, ZHOU Fan1, 2, SI He-long2, ZANG Jin-ping2, XING Ji-hong1, 23*, ZHANG Kang1, 2, 3*, DONG Jin-gao1, 2*

1 State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, P.R.China

2 Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, P.R.China

3 Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding 071000, P.R.China

4 Experimental Training Center of Hebei Agricultural University, Hebei Agricultural University, Baoding 071000, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

糖是植物生长发育中不可或缺的生长能源,在通过疏水屏障时需要糖转运蛋白(STP)的帮助。当玉米受到病原体侵染时,糖的含量会产生波动,但是糖转运蛋白如何在玉米抗病过程中发挥作用还没有清晰地研究。为了鉴定玉米(Zea mays)糖转运蛋白家族成员并分析其在不同组织和生理条件下的表达规律,本研究利用生物信息学方法对玉米基因组中糖转运蛋白编码基因进行了系统性鉴定和分析,利用同源性分析鉴定玉米糖转运蛋白编码基因,利用保守结构域分析对糖转运蛋白进行结构域鉴定,利用转录组数据对糖转运蛋白编码基因进行表达规律分析,利用激素处理试验,验证了该家族成员在激素处理下的表达规律,并利用病斑侵染突变体,验证了该家族成员ZmSTP2ZmSTP20具有抗病性。结果表明,玉米糖转运蛋白家族包含24个成员,均预测分布在细胞膜上,具有高度保守的跨膜转运结构域玉米糖转运蛋白编码基因在不同组织中和胁迫下表达水平有明显差异,其中ZmSTP2ZmSTP20在禾谷镰孢Fusarium graminearum侵染后表达水平持续上升,通过对zmstp2zmstp20突变体进行抗病分析,发现接种玉米圆斑菌(Cochliobolus carbonum)、玉米大斑菌(Setosphaeria turcica)、玉米小斑菌(Cochliobolus heterostrophus)和禾谷镰孢(F. graminearum)后,zmstp2zmstp20突变体的病斑面积显著高于野生型B73。本研究在全基因组层面对玉米糖转运蛋白编码基因进行了系统性鉴定和分析,明确了玉米糖转运蛋白的编码基因,揭示了糖转运蛋白编码基因在玉米不同组织及生物和非生物胁迫中的表达规律,为进一步阐明其功能奠定了重要的理论基础。


Sugar is an indispensable source of energy for plant growth and development, and it requires the participation of sugar transporter proteins (STPs) for crossing the hydrophobic barrier in plants. Here, we systematically identified the genes encoding sugar transporters in the genome of maize (Zea mays L.), analyzed their expression patterns under different conditions, and determined their functions in disease resistance. The results showed that the mazie sugar transporter family contained 24 members, all of which were predicted to be distributed on the cell membrane and had a highly conserved transmembrane transport domain. The tissue-specific expression of the maize sugar transporter genes was analyzed, and the expression level of these genes was found to be significantly different in different tissues. The analysis of biotic and abiotic stress data showed that the expression levels of the sugar transporter genes changed significantly under different stress factors. The expression levels of ZmSTP2 and ZmSTP20 continued to increase following Fusarium graminearum infection. By performing disease resistance analysis of zmstp2 and zmstp20 mutants, we found that after inoculation with Cochliobolus carbonum, Setosphaeria turcica, Cochliobolus heterostrophus, and F. graminearum, the lesion area of the mutants was significantly higher than that of the wild-type B73 plant. In this study, the genes encoding sugar transporters in maize were systematically identified and analyzed at the whole genome level. The expression patterns of the sugar transporter encoding genes in different tissues of maize and under biotic and abiotic stresses were revealed, which laid an important theoretical foundation for further elucidation of their functions.

Keywords:  maize       sugar transporter              gene expression              disease resistance  
Online: 31 December 2022  

This work was supported by the National Natural Science Foundation of China (31901864), the State Key Laboratory of North China Crop Improvement and Regulation (NCCIR2020ZZ-9), the Research Project of Science and Technology in Universities of Hebei Province (BJK2022006), earmarked fund for China Agriculture Research System (CARS-02), the Key Research and Development Projects of Hebei (19226503D), and the Central Government Guides Local Science and Technology Development Projects (216Z6501G, 216Z6502G).

About author:  Correspondence XING Ji-hong, E-mail:; ZHANG Kang, E-mail:; DONG Jin-gao, E-mail: * These authors contributed equally to this work

Cite this article: 

MA Yu-xin, ZHOU Zhi-jun, CAO Hong-zhe, ZHOU Fan, SI He-long, ZANG Jin-ping, XING Ji-hong, ZHANG Kang, DONG Jin-gao. 2022. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2022.12.014

Bihmidine S, Julius B T, Dweikat I, Braun D M. 2016. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems. Plant Signaling & Behavior, 11, e1117721.

Buttner M. 2010. The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biology, 12, 35-41.

Cao H, Guo S, Xu Y, Jiang K, Jones A M, Chong K. 2011. Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa). Journal of Experimental Botany, 62, 4595-4604.

Chardon F, Bedu M, Calenge F, Klemens P W, Spinner L, Gilles C, Chietera G, Léran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus H E, Daniel-Vedele F, Krapp A. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology, 23, 697-702.

Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468, 527-532.

Cho J I, Burla B, Lee D W, Ryoo N, Hong S W, Kim H B, Eom J S, Choi S B, Cho M H, Bhoo S H, Hahn T R, Neuhaus T R, Neuhaus H E, Martinoia E, Jeon J S. 2010. Expression analysis and functional characterization of the monosaccharide transporters, OsTMTs, involving vacuolar sugar transport in rice (Oryza sativa). New Phytologist, 186, 657-668.

Chong J, Piron M C, Meyer S, Merdinoglu D, Bertsch C, Mestre P. 2014. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany, 65, 6589-6601.

Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A, Park Y J, Bennetzen J L, Zhang Q, Wang S. 2006. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theoretical and Applied Genetics, 112, 455-461.

Cohn M, Bart R S, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou B H, Frommer W B, Lahaye T, Staskawicz B J. 2014. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Molecular Plant Microbe Interactions, 27, 1186-1198.

Cordoba E, Aceves-Zamudio D L, Hernández-Bernal A F, Ramos-Vega M, León P. 2015. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana. Journal of Experimental Botany, 66, 147-159.

Ding X, Zeng J, Huang L, Li X, Song S, Pei Y. 2019. Senescence-induced expression of ZmSUT1 in cotton delays leaf senescence while the seed coat-specific expression increases yield. Plant Cell Reports, 38, 991-1000.

Duan C, Song F, Sun S, Guo C, Zhu Z, Wang X. 2019. Characterization and molecular mapping of two novel genes resistant to Pythium stalk rot in maize. Phytopathology, 109, 804-809.

Farhan A, Yan J B. 2012. Disease resistance in maize and the role of molecular breeding in defending against global threat. Journal of Integrative Plant Biology, 54, 134-151.

Finn R D, Clements J, Arndt W, Miller B L, Wheeler T J, Schreiber F, Bateman A, Eddy S R. 2015. HMMER web server: 2015 update. Nucleic Acids Research, 43, W30-W38.

Flütsch S, Nigro A, Conci F, Fajkus J, Thalmann M, Trtílek M, Panzarová K, Santelia D. 2020. Glucose uptake to guard cells via STP transporters provides carbon sources for stomatal opening and plant growth. European Molecular Biology Organization Reports, 21, e49719.

Fotopoulos V, Gilbert M J, Pittman J K, Marvier A C, Buchanan A J, Sauer N, Hall J L, Williams L E. 2003. The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiology, 132, 821-829.

Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, Chen J. 2020. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ, 6, e251.

Hir R L, Spinner L, Klemens P W, Chakraborti D, Marco F D, Vilaine F, Wolff N, Lemoine N, Porcheron B, Géry C, Téoulé E, Chabout S, Grégory M, Neuhaus H E, Dinant S, Bellini C. 2015. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Molecular Plant, 8, 1687-1690.

Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer W B, Yang B, White F F, Wang N, Jones J B. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proceedings of the National Academy of Sciences of the United States of America, 111, e521-e529.

Jacob A, Lancaster J, Buhler J, Harris B, Chamberlain R D. 2008. Mercury BLASTP: Accelerating Protein Sequence Alignment. Transactions on Reconfigurable Technology and Systems, 1, 9.

Kong W, An B, Zhang Y, Yang J, Li S, Sun T, Li Y. 2019. Sugar transporter proteins (STPs) in gramineae crops: comparative analysis, phylogeny, evolution, and expression profiling. Cells, 8, 560.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.

Leach K A, Tran T M, Slewinski T L, Meeley R B, Braun D M. 2017. Sucrose transporter2 contributes to maize growth, development, and crop yield. Journal of Integrative Plant Biology, 59, 390-408.

Lemoine R, Camera S L, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J L, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M. 2013. Source to sink transport and regulation by environmental factors. Frontiers in Plant Science, 4, 272.

Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thévenot P, La Camera S. 2014. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Molecular Biology, 85, 473-84.

Li D, Fu F, Zhang H, Song F. 2015. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics, 16, 771.

Li Y, Wang Y, Zhang H, Zhang Q, Zhai H, Liu Q, He S. 2017. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum. Frontiers in Plant Science, 8, 197.

Liu Q, Dang H, Chen Z, Wu J, Chen Y, Chen S, Luo L. 2018. Genome-wide identification, expression, and functional analysis of the sugar transporter gene family in cassava (Manihot esculenta). International Journal of Molecular Sciences, 19, 987.

Lu X D, Liu J S, Ren W, Yang Q, Chai Z G, Chen R M, Wang L, Zhao J, Lang Z H, Wang H Y, Fan Y L, Zhao J R, Zhang C Y. 2018. Gene-indexed mutations in maize. Molecular Plant, 11, 496-504.

Niittyla T, Messerli G, Trevisa M, Chen J, Smith A M, Zeeman S C. 2004. A previously unknown maltose transporter essential for starch degradation in leaves. Science, 303, 87-89.

Nour-Eldin H H, Nørholm M H, Halkier B A. 2006. Screening for plant transporter function by expressing a normalized Arabidopsis full-length cDNA library in Xenopus oocytes. Plant Methods, 2, 17.

Otori K, Tanabe N, Tamoi M, Shigeoka S. 2019. Sugar Transporter Protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in Arabidopsis. Bioscience, Biotechnology and Biochemistry, 83, 472-481.

Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11, 1650-1667.

Poschet G, Hannich B, Büttner M. 2010. Identification and characterization of AtSTP14, a novel galactose transporter from Arabidopsis. Plant and Cell Physiology, 51, 1571-1580.

Rashid Z, Sofi M, Harlapur S I, Kachapur R M, Dar Z A, Singh P K, Zaidi P H, Vivek, B S, Nair S K. 2020. Genome-wide association studies in tropical maize germplasm reveal novel and known genomic regions for resistance to Northern corn leaf blight. Scientific Reports, 10, 21949.

Redinbaugh M G, Stewart L R. 2018. Maize lethal necrosis: An emerging, synergistic viral disease. Annual Review of Virology, 29, 301-322.

Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, Shibata D, Shiratake K. 2014. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant Cell & Physiology, 55, 1123-1141.

Rottmann T, Zierer W, Subert C, Sauer N, Stadler R. 2016. STP10 encodes a high-affinity monosaccharide transporter and is induced under low-glucose conditions in pollen tubes of Arabidopsis. Journal of Experimental Botany, 67, 2387-2399.

Scholz S J, Büttner M, Sauer N. 2003. AtSTP6, a new pollen-specific H+/-monosaccharide symporter from Arabidopsis. Plant Physiology, 131, 70-77.

Singh N, Ujinwal M, Langyan S, Sayyed R Z, Enshasy H E, Kenawy A A. 2022. Genome-wide exploration of sugar transporter (sweet) family proteins in fabaceae for sustainable protein and carbon source. PloS One, 17, e0268154.

Tran T M, Hampton C S, Brossard T W, Harmata M, Robertson J D, Jurisson S S, Braun D M. 2017. In vivo transport of three radioactive [18F]-fluorinated deoxysucrose analogs by the maize sucrose transporter ZmSUT1. Plant Physiology and Biochemistry, 115, 1-11.

Truernit E, Stadler R, Baier K, Sauer N. 1999. A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant Journal, 17, 191-201.

Wang Y, Zhang W Z, Song L F, Zou J J, Su Z, Wu W H. 2008. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiology, 148, 1201-1211.

Xia H F, Gao W, Qu J, Dai, L Q, Gao Y, Lu S, Zhang M, Wang P W, Wang T Y. 2020. Genetic mapping of northern corn leaf blight-resistant quantitative trait loci in maize. Medicine (Baltimore). 99, e21326.

Yan N. 2013. Structural advances for the major facilitator superfamily (MFS) transporters. Trends in Biochemical Sciences, 38, 151-159.

Yang B, Sugio A, White F F. 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences of the United States of America, 103, 10503-10508.

Yu J, Kim K H. 2020. Exploration of the interactions between mycoviruses and Fusarium graminearum. Advances in Virus Research, 106, 123-144.

Zeng F L, Meng Y N, Hao Z M, Li P, Zhai W B, Shen S, Cao Z Y, Dong J G. 2020. Setosphaeria turcica ATR turns off appressorium-mediated maize infection and triggers melanin-involved self-protection in response to genotoxic stress. Molecular Plant Pathology, 21, 401-414.

Zhang J, Jia X, Wang G F, Ma S, Wang S, Yang Q, Chen X, Zhang Y, Lyu Y, Wang X, Shi J, Zhao Y, Chen Y, Wu L. 2022. Ascorbate peroxidase 1 confers resistance to southern corn leaf blight in maize. Journal of Integrative Plant Biology, 64, 1196-1211.

Zhang J X, Wu Y X, Ho H, Zhang H, He P F, He Y Q. 2014. BZcon1, a SANT/Myb-type gene involved in the conidiation of Cochliobolus carbonum. Genes Genomes Genetics, 4, 1445-1453.

Zhang W, Wang S Y, Yu F W, Tang J, Yu L, Wang H, Li J B. 2019. Genome-wide identification and expression profiling of sugar transporter protein (STP) family genes in cabbage (Brassica oleracea var. capitata L.) reveals their involvement in clubroot disease responses. Genes, 10, 71.

Zuchman R, Koren R, Horwitz B A. 2021. Developmental Roles of the Hog1 Protein Phosphatases of the Maize Pathogen Cochliobolus heterostrophus. Journal of Fungi, 7, 83.

No related articles found!
No Suggested Reading articles found!