Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3739-3756    DOI: 10.1016/j.jia.2024.11.009
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Combining GWAS and RNA-seq approaches identifies the FtADH1 gene for drought resistance in Tartary buckwheat

Jiayue He1, 2*, Yanhua Chen2*, Yanrong Hao2, Dili Lai2, Tanzim Jahan2, Yaliang Shi2, Hao Lin2, Yuqi He2, Md. Nurul Huda2, Jianping Cheng1, Kaixuan Zhang2, Jinbo Li3#, Jingjun Ruan1#, Meiliang Zhou2, 4# 

1 College of Agriculture, Guizhou University, Guiyang 550025, China  

2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 College of Life Sciences, Luoyang Normal University, Luoyang 471934, China

4 Sanya Nan Fan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China

 Highlights 
FtADH1, identified via membership function value of drought tolerance (MFVD), genome-wide association study (GWAS), and transcriptomics, enhances drought resistance by promoting root growth and reactive oxygen species (ROS) scavenging in Arabidopsis and Tartary buckwheat hairy roots.
FtADH1 interacts with FtSAMS1, whose overexpression can boost alcohol dehydrogenase (ADH) activity and S-adenosyl-L-methionine (SAM) content to regulate stress responses under drought.
Evolutionary analysis shows ADH1 in Fagopyrum species underwent duplication and purifying selection, driving drought resistance in cultivated buckwheat.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

干旱严重制约了苦荞产业的发展,干旱灾害是影响苦荞幼苗生长、产量及品质的主要环境因素。然而,苦荞中与干旱耐受相关基因的分子机制目前仍较少被研究。乙醇脱氢酶基因(ADH)在植物中作为一个小的基因家族,在植物生长、发育及抵御逆境胁迫中发挥着重要的作用,但其在干旱胁迫中潜在的分子机制仍不清楚。本研究基于抗旱隶属函数值(MFVD)综合评价苦荞各个品种的抗旱性,通过全基因组关联研究(GWAS)结合转录组数据分析,鉴定到苦荞抗旱基因FtADH1。研究结果表明,在拟南芥和苦荞毛状根中过表达FtADH1可以通过促进根系伸长和清除活性氧来增强其干旱耐受能力。此外,我们通过pull-down联合质谱分析发现与FtADH1相互作用的蛋白,揭示了苦荞FtADH1的与S-腺苷甲硫氨酸SAM)合成酶蛋白FtSAMS1存在特异性相互作用。进一步的研究发现,在水分缺失胁迫处理下,过表达FtSAMS1可以显著增强苦荞毛状根中ADH酶活性和增加SAM含量。此外,FtSAMS1拟南芥和苦荞毛状根的过表达植物均表现出耐旱表型,这揭示了其FtADH1一致的生物学功能。进化变异分析表明,在荞麦属植物中,ADH1发生了基因重复和净化选择,这可能有助于提高该基因的适应性优势,如提高在栽培荞麦中的抗旱性。总之,我们的研究结果强调了的FtADH1在干旱胁迫下的重要功能,并且阐明了FtADH1FtSAMS1在干旱条件下的相互作用机制,阐明了FtADH1FtSAMS1之间的相互作用机制,并探讨了其在荞麦及其近缘种抗旱品种开发中的潜在应用价值。



Abstract  

 Drought is one of the major environmental constraints that significantly affects seedling emergence, yield, and quality of Tartary buckwheat, thereby hindering the development of its industry.  However, the molecular mechanisms underlying drought tolerance genes in Tartary buckwheat remain largely unexplored.  Alcohol dehydrogenase (ADH), one of the essential plant proteins, plays a crucial role in growth, development, and stress responses, but its specific role in drought resistance is still unclear.  In this study, we identified an ADH gene FtADH1, using a membership function value of drought tolerance (MFVD) combined with a genome-wide association study (GWAS) and transcriptomic profiles that confers drought tolerance in Tartary buckwheat. Our findings demonstrated that the overexpression of FtADH1 in Arabidopsis and Tartary buckwheat hairy roots enhances drought tolerance by promoting root elongation and mitigating elevated levels of reactive oxygen species (ROS).  Our findings demonstrated that FtADH1 can enhanced tolerance to drought stresses in both Tartary buckwheat and Arabidopsis.  This study identifies the FtADH1 as a new player in affecting ROS level and the stress response of Tartary buckwheat by regulating protective enzyme activities at a high level to scavenge ROS and modulating root growth under drought stress.  Further, we identified proteins interacting with FtADH1 through a prokaryotic expression pull-down assay combined with mass spectrometry, revealing that FtADH1 specifically interacts with the S-adenosyl-L-methionine (SAM) synthetase protein, FtSAMS1.  Overexpression of FtSAMS1 was found to enhance ADH enzymatic activity, leading to increased SAM content in overexpressing Tartary buckwheat hairy roots under water-deficit conditions.  Additionally, FtSAMS1 overexpression induced a drought-resistant phenotype in Arabidopsis and Tartary buckwheat hairy roots under drought stress, revealing the biological function of FtADH1. Evolutionary analysis indicates that ADH1 in Fagopyrum species has undergone significant evolutionary events, including duplication and purifying selection, which may contribute to functional diversification and adaptive advantages such as drought resistance in cultivated buckwheat.  In summary, this study proposes that FtADH1 is a key contributor to drought tolerance, and its interaction with FtSAMS1 holds potential for the development of drought-resistant varieties in Tartary buckwheat and its relative species.

Keywords:  Tartary buckwheat       FtADH1       FtSAMS1       drought       GWAS       hairy roots  
Received: 25 June 2024   Online: 04 November 2024   Accepted: 24 September 2024
Fund: 
This research was supported by the National Natural Science Foundation of China (32372045), the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, China (Qiankehezhongyindi (2023) 008), and the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, China (Qianjiaoji (2023) 007).  
About author:  #Correspondence Jinbo Li, E-mail: jinbo406@126.com; Jingjun Ruan, E-mail: 523131814@qq.com; Meiliang Zhou, E-mail: zhoumeiliang@caas.cn * These authors contributed equally to this study.

Cite this article: 

Jiayue He, Yanhua Chen, Yanrong Hao, Dili Lai, Tanzim Jahan, Yaliang Shi, Hao Lin, Yuqi He, Md. Nurul Huda, Jianping Cheng, Kaixuan Zhang, Jinbo Li, Jingjun Ruan, Meiliang Zhou. 2025. Combining GWAS and RNA-seq approaches identifies the FtADH1 gene for drought resistance in Tartary buckwheat. Journal of Integrative Agriculture, 24(10): 3739-3756.

Ahmed I M, Nadira U A, Qiu C W, Cao F, Chen Z H, Vincze E, Wu F. 2020. The barley S-adenosylmethionine synthetase 3 gene HvSAMS3 positively regulates the tolerance to combined drought and salinity stress in Tibetan wild barley. Cells9, 1530.

Bailey-Serres J, Parker J E, Ainsworth E A, Oldroyd G E D, Schroeder J I. 2019. Genetic strategies for improving crop yields. Nature575, 109–118.

Betteridge D J. 2000. What is oxidative stress? Metabolism49, 3–8.

Bitencourt-Ferreira G, Pintro V O, de Azevedo W F Jr. 2019. Docking with AutoDock4. Methods in Molecular Biology 2053, 125–148.

Bocchini M, D’Amato R, Ciancaleoni S, Fontanella M C, Palmerini C A, Beone G M, Onofri A, Negri V, Marconi G, Albertini E, Businelli D. 2018. Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance. Frontiers in Plant Science9, 389.

Boyer J S. 1982. Plant productivity and environment. Science218, 443–448.

Boyer J S, Silk W K, Watt M. 2010. Path of water for root growth. Functional Plant Biology37, 1105–1116.

Cantoni G L. 1953. S-Adenosylmethionine: A new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. Journal of Biological Chemistry204, 403–416.

Çelik A, Aktaş F. 2013. A new NADH-dependent, zinc containing alcohol dehydrogenase from Bacillus thuringiensis serovar israelensis involved in oxidations of short to medium chain primary alcohols. Journal of Molecular Catalysis B: Enzymatic89, 114–121.

Chen C, Wu Q, Yue J, Wang X, Wang C, Wei R, Li R, Jin G, Chen T, Chen P. 2024. A cyclic nucleotide-gated channel gene HcCNGC21 positively regulates salt and drought stress responses in kenaf (Hibiscus cannabinus L.). Plant Science345, 112111.

Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. 2023. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant16, 1733–1742.

Choi H L, Seo J W, Hwang M H, Yu C Y, Seong E S. 2022. MsSAMS, a cold stress-responsive gene, provides resistance to environmental stress in T2-generation transgenic plants. Transgenic Research31, 381–389.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacteriummediated transformation of Arabidopsis thalianaThe Plant Journal16, 735–743.

Comas L H, Becker S R, Cruz V M V, Byrne P F, Dierig D A. 2013. Root traits contributing to plant productivity under drought. Frontiers in Plant Science4, 442.

Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R. 2011. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiology and Biochemistry49, 1384–1391.

Davey M, Stals E, Panis B, Keulemans J, Swennen R. 2005. High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry347, 201–207.

Dossa K, Li D, Zhou R, Yu J, Wang L, Zhang Y, You J, Liu A, Mmadi M A, Fonceka D, Diouf D, Cissé N, Wei X, Zhang X. 2019. The genetic basis of drought tolerance in the high oil crop Sesamum indicumPlant Biotechnol Journal17, 1788–1803.

Fan T L, Li S Z, Zhao G, Wang S Y, Zhang J J, Wang L, Dang Y, Cheng W L. 2023. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize. Journal of Integrative Agriculture22, 2067–2079.

Garabagi F, Strommer J. 2004. Distinct genes produce the alcohol dehydrogenases of pollen and maternal tissues in Petunia hybridaBiochemical Genetics42, 199–208.

Gautheron J, Elsayed S, Pistorio V, Lockhart S, Zammouri J, Auclair M, Koulman A, Meadows S R, Lhomme M, Ponnaiah M. 2024. ADH1B, the adipocyte-enriched alcohol dehydrogenase, plays an essential, cell-autonomous role in human adipogenesis. Proceedings of the National Academy of Sciences of the United States of America121, e2319301121.

Guo J, Li C, Zhang X, Li Y, Zhang D, Shi Y, Song Y, Li Y, Yang D, Wang T. 2020. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Science292, 110380.

Guo Z, Yang W, Chang Y, Ma X, Tu H, Xiong F, Jiang N, Feng H, Huang C, Yang P, Zhao H, Chen G, Liu H, Luo L, Hu H, Liu Q, Xiong L. 2018. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. Molecular Plant11, 789–805.

Hareem M, Danish S, Obaid S A, Ansari M J, Datta R. 2024. Mitigation of drought stress in chili plants (Capsicum annuum L.) using mango fruit waste biochar, fulvic acid and cobalt. Scientific Reports14, 14270.

He M, He Y, Zhang K, Lu X, Zhang X, Gao B, Fan Y, Zhao H, Jha R, Huda M N. 2022. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. New Phytologist235, 1927–1943.

He Y, Zhang K, Shi Y, Lin H, Huang X, Lu X, Wang Z, Li W, Feng X, Shi T, Chen Q, Wang J, Tang Y, Chapman M A, Germ M, Luthar Z, Kreft I, Janovská D, Meglič V, Woo S H, Quinet M, Fernie A R, Liu X, Zhou M. 2024. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biology25, 61.

Hewedy O A, Elsheery N I, Karkour A M, Elhamouly N, Arafa R A, Mahmoud G A E, Dawood M F A, Hussein W E, Mansour A, Amin D H, Allakhverdiev S I, Zivcak M, Brestic M. 2023. Jasmonic acid regulates plant development and orchestrates stress response during tough times. Environmental and Experimental Botany208, 105260.

Huang J, Chen Q, Rong Y, Tang B, Zhu L, Ren R, Shi T, Chen Q. 2021. Transcriptome analysis revealed gene regulatory network involved in PEG-induced drought stress in Tartary buckwheat (Fagopyrum tararicum). PeerJ9, e11136.

Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B. 2011. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics44, 32–39.

Huda M N, Lu S, Jahan T, Ding M, Jha R, Zhang K, Zhang W, Georgiev M I, Park S U, Zhou M. 2021. Treasure from garden: Bioactive compounds of buckwheat. Food Chemistry335, 127653.

Jeong S, Lim C W, Lee S C. 2021. CaADIP1-dependent CaADIK1-kinase activation is required for abscisic acid signalling and drought stress response in Capsicum annuumNew Phytologist231, 2247–2261.

Käsbauer C L, Pathuri I P, Hensel G, Kumlehn J, Hückelhoven R, Proels R K. 2018. Barley ADH-1 modulates susceptibility to Bgh and is involved in chitin-induced systemic resistance. Plant Physiology and Biochemistry123, 281–287.

Kim S H, Kim S H, Palaniyandi S A, Yang S H, Suh J W. 2015. Expression of potato S-adenosyl-L-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Plant Physiology and Biochemistry87, 84–91.

Kreft I, Zhou M, Golob A, Germ M, Likar M, Dziedzic K, Luthar Z. 2020. Breeding buckwheat for nutritional quality. Breeding Science70, 67–73.

Kumar S, Sandell L L, Trainor P A, Koentgen F, Duester G. 2012. Alcohol and aldehyde dehydrogenases: Retinoid metabolic effects in mouse knockout models. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids1821, 198–205.

Lai D L, Huda M N, Xiao Y W, Jahan T, Li W, He Y Q, Zhang K X, Cheng J P, Ruan J J, Zhou M L. 2025. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress. Journal of Integrative Agriculture24, 3334–3350.

Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature529, 84–87.

Li M X, Yeung J M, Cherny S S, Sham P C. 2012. Evaluating the effective numbers of independent tests and significant P-value thresholds in commercial genotyping arrays and public imputation reference datasets. Humam Genetics131, 747–756.

Li W, Han Y, Tao F, Chong K. 2011. Knockdown of SAMS genes encoding S-adenosyl-l-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. Journal of Plant Physiology168, 1837–1843.

Li X, Tang Y, Li H, Luo W, Zhou C, Zhang L, Lv J. 2020. A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat. Plant Science299, 110613.

Luan H, Li H, Li Y, Chen C, Li S, Wang Y, Yang J, Xu M, Shen H, Qiao H, Wang J. 2023. Transcriptome analysis of barley (Hordeum vulgare L.) under waterlogging stress, and overexpression of the HvADH4 gene confers waterlogging tolerance in transgenic ArabidopsisBMC Plant Biology23, 62.

Luo X, Wang B, Gao S, Zhang F, Terzaghi W, Dai M. 2019. Genomewide association study dissects the genetic bases of salt tolerance in maize seedlings. Journal of Integrative Plant Biology61, 658–674.

Lv A M, Su L T, Fan N N, Wen W W, Gao L, Mo X, You X K, Zhou P, An Y. 2024. The MsDHN1-MsPIP2;1-MsmMYB module orchestrates the trade-off between growth and survival of alfalfa in response to drought stress. Plant Biotechnology Journal22, 1132–1145.

Ma J, Du G, Li X, Zhang C, Guo J. 2015. A major locus controlling malondialdehyde content under water stress is associated with Fusarium crown rot resistance in wheat. Molecular Genetics and Genomics290, 1955–1962.

Meng H L, Sun P Y, Wang J R, Sun X Q, Zheng C Z, Fan T, Chen Q F, Li H Y. 2022. Comparative physiological, transcriptomic, and WGCNA analyses reveal the key genes and regulatory pathways associated with drought tolerance in Tartary buckwheat. Frontiers in Plant Science13, 985088.

Meng J, Wang L, Wang J, Zhao X, Cheng J, Yu W, Jin D, Li Q, Gong Z. 2018. METHIONINE ADENOSYLTRANSFERASE4 mediates DNA and histone methylation. Plant Physiology177, 652–670.

Mwadzingeni L, Shimelis H, Rees D J, Tsilo T J. 2017. Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS ONE12, e0171692.

Nazir F, Peter P, Gupta R, Kumari S, Nawaz K, Khan M I R. 2024. Plant hormone ethylene: A leading edge in conferring drought stress tolerance. Physiologia Plantarum176, e14151.

Plapp B V, Lee A T I, Khanna A, Pryor J M. 2013. Bradykinetic alcohol dehydrogenases make yeast fitter for growth in the presence of allyl alcohol. Chemico-Biological Interactions202, 104–110.

Pulla R K, Kim Y J, Parvin S, Shim J S, Lee J H, Kim Y J, In J G, Senthil K S, Yang D C. 2009. Isolation of S-adenosyl-L-methionine synthetase gene from Panax ginseng C.A. meyer and analysis of its response to abiotic stresses. Physiology and Molecular Biology of Plants15, 267–275.

Qi X, Li M W, Xie M, Liu X, Ni M, Shao G, Song C, Kay Yuen Yim A, Tao Y, Wong F L. 2014. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications5, 4340.

Roje S. 2006. S-Adenosyl-l-methionine: Beyond the universal methyl group donor. Phytochemistry67, 1686–1698.

Senthil-Kumar M, Hema R, Suryachandra T R, Ramegowda H V, Gopalakrishna R, Rama N, Udayakumar M, Mysore K S. 2010. Functional characterization of three water deficit stress-induced genes in tobacco and Arabidopsis: An approach based on gene down regulation. Plant Physiology and Biochemistry48, 35–44.

Sha X Q, Guan H H, Zhou Y Q, Su E H, Guo J, Li Y X, Zhang D F, Liu X Y, He G H, Li Y, Wang T Y, Zou H W, Li C H. 2023. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize. Journal of Integrative Agriculture22, 3394–3407.

Sequera-Mutiozabal M, Antoniou C, Tiburcio A F, Alcázar R, Fotopoulos V. 2017. Polyamines: emerging hubs promoting drought and salt stress tolerance in plants. Current Molecular Biology Reports3, 28–36.

Shaar-Moshe L, Hübner S, Peleg Z. 2015. Identification of conserved drought-adaptive genes using a cross-species meta-analysis approach. BMC Plant Biology15, 111.

Shi H, Liu W, Yao Y, Wei Y, Chan Z. 2017. Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in ArabidopsisPlant Science262, 24–31.

Shohat H, Eliaz N I, Weiss D. 2021. Gibberellin in tomato: metabolism, signaling and role in drought responses. Molecular Horticulture1, 15.

Singh D, Laxmi A. 2015. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science6, 895.

Speirs J, Lee E, Holt K, Yong-Duk K, Steele Scott N, Loveys B, Schuch W. 1998. Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiology117, 1047–1058.

Strommer J. 2011. The plant ADH gene family. The Plant Journal66, 128–142.

Su W, Ren Y, Wang D, Su Y, Feng J, Zhang C, Tang H, Xu L, Muhammad K, Que Y. 2020. The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC Genomics21, 521.

Tardieu F, Simonneau T, Muller B. 2018. The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annual Review of Plant Biology69, 733–759.

Thompson C E, Salzano F M, de Souza O N, Freitas L B. 2007. Sequence and structural aspects of the functional diversification of plant alcohol dehydrogenases. Gene396, 108–115.

Tougou M, Hashiguchi A, Yukawa K, Nanjo Y, Hiraga S, Nakamura T, Nishizawa K, Komatsu S. 2012. Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. Plant Biotechnology29, 301–305.

Van Der Straeten D, Rodrigues Pousada R A, Gielen J, Van Montagu M. 2002. Tomato alcohol dehydrogenase. FEBS Letters295, 39–42.

Wang F B, Wan C Z, Niu H F, Qi M Y, Li G, Zhang F, Hu L B Ye Y X, Wang Z X, Pei B L, Chen X H, Yuan C Y. 2023. OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice. Journal of Integrative Agriculture22, 341–359.

Wang X, Li Q, Xie J, Huang M, Cai J, Zhou Q, Dai T, Jiang D. 2021. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. The Crop Journal9, 120–132.

Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics48, 1233–1241.

Wang Z, Wang F, Hong Y, Yao J, Ren Z, Shi H, Zhu J K. 2018. The flowering repressor SVP confers drought resistance in Arabidopsis by regulating abscisic acid catabolism. Molecular Plant11, 1184–1197.

Wei H, Wang X, Wang K, Tang X, Zhang N, Si H. 2024. Transcription factors as molecular switches regulating plant responses to drought stress. Physiologia Plantarum176, e14366.

Xiang D B, Wei W, Wan Y, Wu X Y, Ye X L, Peng L X, Zhong L Y, Wu Q, Zou L, Zhao G, Zhao J L. 2021. Polysaccharide elicitor from the Endophyte bionectria sp. Fat6 improves growth of Tartary buckwheat under drought stress. Phyton-International Journal of Experimental Botany90, 461–473.

Xiao J, Cheng H, Li X, Xiao J, Xu C, Wang S. 2013. Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plant Physiology163, 1868–1882.

Yan H, Liu C, Zhao J, Ye X, Wu Q, Yao T, Peng L, Zou L, Zhao G. 2021. Genome-wide analysis of the NF-Y gene family and their roles in relation to fruit development in Tartary buckwheat (Fagopyrum tataricum). International Journal of Biological Macromolecules190, 487–498.

Yang H, Fang Y, Liang Z, Qin T, Liu J H, Liu T. 2024. Polyamines: pleiotropic molecules regulating plant development and enhancing crop yield and quality. Plant Biotechnology Journal22, 3194–3201.

Yang S, Jia Q, Wang Q, Wang J, Li J, Hu S, Zhang W, Zhang H, Guo Y, Chen X, Zhu Y, Chen H. 2026. Genome-wide association study of appearance quality traits and development of KASP makers in vegetable soybean. Journal of Integrative Agriculture, doi: https://doi.org/10.1016/j.jia.2024.09.005.

Yi S Y, Ku S S, Sim H J, Kim S K, Park J H, Lyu J I, So E J, Choi S Y, Kim J, Ahn M S, Kim S W, Park H, Jeong W J, Lim Y P, Min S R, Liu J R. 2017. An alcohol dehydrogenase gene from Synechocystis sp. confers salt tolerance in transgenic tobacco. Frontiers in Plant Science8, 1965.

Yu L H, Wu S J, Peng Y S, Liu R N, Chen X, Zhao P, Xu P, Zhu J B, Jiao G L, Pei Y, Xiang C B. 2015. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnology Journal14, 72–84.

Zhang F, Rosental L, Ji B, Brotman Y, Dai M. 2024. Metabolitemediated adaptation of crops to drought and the acquisition of tolerance. The Plant Journal118, 626–644.

Zhang H, Zhang J, Xu Q, Wang D, Di H, Huang J, Yang X, Wang Z, Zhang L, Dong L, Wang Z, Zhou Y. 2020. Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNA-seq approaches. BMC Plant Biology20, 333.

Zhang J, Huang D, Zhao X, Zhang M. 2021. Evaluation of drought resistance and transcriptome analysis for the identification of drought-responsive genes in Iris germanicaScientific Reports11, 16308.

Zhang K X, He M, Fan Y, Zhao H, Gao B, Yang K, Li F, Tang Y, Gao Q, Lin T, Quinet M, Janovská D, Meglič V, Kwiatkowski J, Romanova O, Chrungoo N, Suzuki T, Luthar Z, Germ M, Woo S H, Georgiev M I, Zhou M. 2021. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biology22, 23.

Zhang K X, He Y, Lu X, Shi Y, Zhao H, Li X, Li J, Liu Y, Ouyang Y, Tang Y. 2023. Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility. Molecular Plant16, 1427–1444.

Zhang K, Logacheva M D, Meng Y, Hu J, Wan D, Li L, Janovská D, Wang Z, Georgiev M I, Yu Z. 2018. Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricumJournal of Experimental Botany, 69, 1955–1966.

Zhang X, Bao Z, Gong B, Shi Q. 2020. S-adenosylmethionine synthetase 1 confers drought and salt tolerance in transgenic tomato. Environmental and Experimental Botany179, 104226.

Zhang Z L, Zhou M L, Tang Y, Li F L, Tang Y X, Shao J R, Xue W T, Wu Y M. 2012. Bioactive compounds in functional buckwheat food. Food Research International49, 389–395.

Zhang Z P, Li Z, He F, LÜ J J, Xie B, Yi X Y, Li J M, Li J, Song J H, Pu Z E, Ma J, Peng Y Y, Chen G Y, Wei Y M, Zheng Y L, Li W. 2023. Genome-wide association and linkage mapping strategies reveal the genetic loci and candidate genes of important agronomic traits in Sichuan wheat. Journal of Integrative Agriculture22, 3380–3393.

Zhao W, Huang H, Wang J, Wang X, Xu B, Yao X, Sun L, Yang R, Wang J, Sun A. 2023. Jasmonic acid enhances osmotic stress responses by MYC2mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. The Plant Journal113, 546–561.

Zhou M, Sun Z, Ding M, Logacheva M D, Kreft I, Wang D, Yan M, Shao J, Tang Y, Wu Y. 2017. FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricumNew Phytologist216, 814–828.

Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell167, 313–324.

[1] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[2] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[3] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[4] Xuehao Zhang, Qiuling Zheng, Yongjiang Hao, Yingying Zhang, Weijie Gu, Zhihao Deng, Penghui Zhou, Yulin Fang, Keqin Chen, Kekun Zhang. Physiology and transcriptome profiling reveal the drought tolerance of five grape varieties under high temperatures[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3055-3072.
[5] Yang Chen, Xuyu Feng, Xiao Zhao, Xinmei Hao, Ling Tong, Sufen Wang, Risheng Ding, Shaozhong Kang. Biochar application enhances soil quality by improving soil physical structure under particular water and salt conditions in arid region of Northwest China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3242-3263.
[6] Yapeng Zhang, Wentao Cai, Qi Zhang, Qian Li, Yahui Wang, Ruiqi Peng, Haiqi Yin, Xin Hu, Zezhao Wang, Bo Zhu, Xue Gao, Yan Chen, Huijiang Gao, Lingyang Xu, Junya Li, Lupei Zha. Integrated analyses of genomic and transcriptomic data reveal candidate variants associated with carcass traits in Huaxi cattle[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3169-3184.
[7] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[8] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[9] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[10] Xiaoli Zhang, Daolin Ye, Xueling Wen, Xinling Liu, Lijin Lin, Xiulan Lü, Jin Wang, Qunxian Deng, Hui Xia, Dong Liang. Genome-wide analysis of RAD23 gene family and a functional characterization of AcRAD23D1 in drought resistance in Actinidia[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1831-1843.
[11] Yuxin Wang, Huan Zhang, Shaopei Gao, Hong Zhai, Shaozhen He, Ning Zhao, Qingchang Liu. The ABA-inducible gene IbTSJT1 positively regulates drought tolerance in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1390-1402.
[12] Deyin Zhang, Xiaolong Li, Fadi Li, Xiaoxue Zhang, Yuan Zhao, Yukun Zhang, Zongwu Ma, Huibin Tian, Xiuxiu Weng, Weimin Wang. Genome-wide association study identifies novel loci associated with feed efficiency traits in Hu lambs[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1259-1269.
[13] Yu Li, Shikui Dong, Qingzhu Gao, Yong Zhang, Hasbagan Ganjurjav, Guozheng Hu, Xuexia Wang, Yulong Yan, Fengcai He, Fangyan Cheng. Large herbivores increase the proportion of palatable species rather than unpalatable species in the plant community[J]. >Journal of Integrative Agriculture, 2025, 24(3): 859-870.
[14] Guoling Guo, Haiyan Zhang, Weiyu Dong, Bo Xu, Youyu Wang, Qingchen Zhao, Lun Liu, Xiaomei Tang, Li Liu, Zhenfeng Ye, Wei Heng, Liwu Zhu, Bing Jia. Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA3-inhibited reactive oxygen species detoxification and abscisic acid signaling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2989-3011.
[15] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
No Suggested Reading articles found!