Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 2911-2922    DOI: 10.1016/j.jia.2023.09.009
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat
Mingming Wang1, 2, Jia Geng1, 2, Zhe Zhang1, 2, Zihan Zhang1, 2, Lingfeng Miao1, 2, Tian Ma1, 2, Jiewen Xing1, 2, Baoyun Li1, 2, Qixin Sun1, 2, Yufeng Zhang1, 2#, Zhongfu Ni1, 2#
1 Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
2 National Plant Gene Research Centre, Beijing 100193, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

籽粒大小是籽粒产量的决定因素之一,鉴定控制籽粒大小的遗传位点对产量的提升意义重大。在之前的研究中,利用面包小麦TAA10和人工合成六倍体小麦XX329衍生的F2群体检测到一个与粒长(GL)有关的稳定QTL位点QGl.cau-2D.1。在本研究中,我们主要是为了对该位点精细定位和并对其遗传效应进行验证。以TAA10轮回亲本,通过分子标记辅助选择获得多个近等基因系(NILs)通过25个杂合单株衍生的次级分离群体对位点QGl.cau-2D.1进行精细定位,来自于XX329的增效基因使粒长、千粒重、总小穗数和穗密度增加,进一步利用2D+ (XX329)2D−(TAA10)NIL材料对该位点进行遗传和多效性的验证。根据中国春RefSeq v2.1的序列,将目标位点定位至约~0.9 Mb的区间。根据两亲本的重测序结果和表达谱差异分析将TraesCS2D03G0114900 (Os03g0594700)确定为候选基因。总之,QGl.cau-2D.1通过粒长的增加提高千粒重,并同时显著提升总小穗数。



Abstract  
Grain size is one of the determinants of grain yield, and identifying the genetic loci that control grain size will be helpful for increasing grain yield. In our previous study, a quantitative trait locus (QTL) for grain length (GL), QGl.cau-2D.1, was identified from an F2 population developed from the cross between the natural (TAA10) and synthetic (XX329) allohexaploid wheat. In the present study, we mainly fine mapped and validated its genetic effects. To this end, multiple near-isogenic lines (NILs) were obtained through marker-assisted selection with TAA10 as the recurrent parent. The secondary populations derived from 25 heterozygous recombinants were used for fine mapping of QGl.cau-2D.1, and the allele from XX329 significantly increased GL, thousand-grain weight (TGW), total spikelet number per spike (TSN) and spike compactness (SC). Using NILs for XX329 (2D+) and TAA10 (2D−), we determined the genetic and pleiotropic effects of QGl.cau-2D.1. The target sequences were aligned with the wheat reference genome RefSeq v2.1 and spanned an ~0.9 Mb genomic region. TraesCS2D03G0114900 (ortholog of Os03g0594700) was predicted as the candidate gene based on whole-genome re-sequencing and expression analyses. In summary, the map-based cloning of QGl.cau-2D.1 will be useful for improving grain weight with enhanced GL and TSN.
Keywords:  grain length        total spikelet number per spike        spike compactness        near-isogenic lines        QTL        wheat  
Received: 05 April 2023   Accepted: 19 July 2023
Fund: This work was financially supported by the National Key Research and Development Program of China (32172069).
About author:  #Correspondence ZHANG Yu-feng, Tel: +86-010-62734421, E-mail: zhangyufeng@cau.edu.cn; NI Zhong-fu, Tel: +86-010-62734421, E-mail: nizf@cau.edu.cn

Cite this article: 

Mingming Wang, Jia Geng, Zhe Zhang, Zihan Zhang, Lingfeng Miao, Tian Ma, Jiewen Xing, Baoyun Li, Qixin Sun, Yufeng Zhang, Zhongfu Ni. 2024. Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat. Journal of Integrative Agriculture, 23(9): 2911-2922.

Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S, Thompson W F. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols1, 2320–2325.

Brinton J, Simmonds J, Minter F, Leverington-Waite M, Snape J, Uauy C. 2017. Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. New Phytologist215, 1026–1038.

Cao S, Xu D, Hanif M, Xia X, He Z. 2020. Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics133, 1811–1823.

Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A, Ni Z. 2019. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theoretical and Applied Genetics132, 1815–1831.

Chen Y, Song W, Xie X, Wang Z, Guan P, Peng H, Jiao Y, Ni Z, Sun Q, Guo W. 2020a. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the triticeae tribe as a pilot practice in the plant pangenomic era. Molecular Plant13, 1694–1708.

Chen Y, Yan Y, Wu T, Zhang G, Yin H, Chen W, Wang S, Chang F, Gou J. 2020b. Cloning of wheat keto-acyl thiolase 2B reveals a role of jasmonic acid in grain weight determination. Nature Communications11, 626.

Chen Z, Cheng X, Chai L, Wang Z, Bian R, Li J, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z. 2020a. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics133, 149–162.

Chen Z, Cheng X, Chai L, Wang Z, Du D, Wang Z, Bian R, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z. 2020b. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics133, 1825–1838.

Cheng X, Xin M, Xu R, Chen Z, Cai W, Chai L, Xu H, Jia L, Feng Z, Wang Z, Peng H, Yao Y, Hu Z, Guo W, Ni Z, Sun Q. 2020. A single amino acid substitution in STKc_GSK3 kinase conferring semispherical grains and its implications for the origin of Triticum sphaerococcumThe Plant Cell32, 923–934.

Cobb J N, Juma R U, Biswas P S, Arbelaez J D, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng E H. 2019. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theoretical and Applied Genetics132, 627–645.

Cui F, Ding A, Li J, Zhao C, Wang L, Wang X, Qi X, Li X, Li G, Gao J, Wang H. 2011. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica186, 177–192.

Dyck J A, Matus-Cádiz M A, Hucl P, Talbert L, Hunt T, Dubuc J P, Nass H, Clayton G, Dobb J, Quick J. 2004. Agronomic performance of hard red spring wheat isolines sensitive and insensitive to photoperiod. Crop Science44, 1976–1981.

Gegas V C, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan J H, Snape J W. 2010. A genetic framework for grain size and shape variation in wheat. The Plant Cell22, 1046–1056.

González F G, Terrile I I, Falcón M O. 2011. Spike fertility and duration of stem elongation as promising traits to improve potential grain number (and yield): variation in modern argentinean wheats. Crop Science51, 1693–1702.

Guan P, Di N, Mu Q, Shen X, Wang Y, Wang X, Yu K, Song W, Chen Y, Xin M, Hu Z, Guo W, Yao Y, Ni Z, Sun Q, Peng H. 2019. Use of near-isogenic lines to precisely map and validate a major QTL for grain weight on chromosome 4AL in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics132, 2367–2379.

Guan P, Shen X, Mu Q, Wang Y, Wang X, Chen Y, Zhao Y, Chen X, Zhao A, Mao W, Guo Y, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H. 2020. Dissection and validation of a QTL cluster linked to Rht-B1 locus controlling grain weight in common wheat (Triticum aestivum L.) using near-isogenic lines. Theoretical and Applied Genetics133, 2639–2653.

Hanif M, Gao F, Liu J, Wen W, Zhang Y, Rasheed A, Xia X, He Z, Cao S. 2015. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Molecular Breeding36, 1–8.

Hao M, Zhang L, Ning S, Huang L, Yuan Z, Wu B, Yan Z, Dai S, Jiang B, Zheng Y, Liu D. 2020. The resurgence of introgression breeding, as exemplified in wheat improvement. Frontiers in Plant Science11, 252.

Heidari B, Sayed-Tabatabaei B E, Saeidi G, Kearsey M, Suenaga K. 2011. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome54, 517–527.

Huang F, Li X, Du X, Li S, Li N, Lv Y, Zou S, Zhang Q, Wang L, Ni Z, Han Y, Xing J. 2023. SNP-based identification of QTLs for thousand-grain weight and related traits in wheat 8762/Keyi 5214 DH lines. Journal of Integrative Agriculture22, 2949–2960.

Huang Y, Kong Z, Wu X, Cheng R, Yu D, Ma Z. 2015. Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions. Theoretical and Applied Genetics128, 2437–2445.

Kerber E E. 1964. Wheat: Reconstitution of the tetraploid component (AABB) of hexaploids. Science143, 253–255.

Kuchel H, Williams K J, Langridge P, Eagles H A, Jefferies S P. 2007. Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theoretical and Applied Genetics115, 1029–1041.

Langridge P. 2013. Wheat genomics and the ambitious targets for future wheat production. Genome56, 545–547.

Liao S M, Xu Z B, Fan X L, Zhou Q, Liu X F, Jiang C, Chen L E, Lin D, Feng B, Wang T. 2024. Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.). Journal of Integrative Agriculture23, 77–92.

Li N, Li Y. 2016. Signaling pathways of seed size control in plants. Current Opinion in Plant Biology33, 23–32.

Li W, Yang B. 2017. Translational genomics of grain size regulation in wheat. Theoretical and Applied Genetics130, 1765–1771.

Liu H, Li H, Hao C, Wang K, Wang Y, Qin L, An D, Li T, Zhang X. 2020a. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal18, 1330–1342.

Liu H, Zhang X, Xu Y, Ma F, Zhang J, Cao Y, Li L, An D. 2020b. Identification and validation of quantitative trait loci for kernel traits in common wheat (Triticum aestivum L.). BMC Plant Biology20, 529.

Luo M C, Gu Y Q, Puiu D, Wang H, Twardziok S O, Deal K R, Huo N, Zhu T, Wang L, Wang Y, McGuire P E, Liu S, Long H, Ramasamy R K, Rodriguez J C, Van S L, Yuan L, Wang Z, Xia Z, Xiao L, et al. 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschiiNature551, 498–502.

Ma D, Yan J, He Z, Wu L, Xia X. 2010. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding29, 43–52.

Ma J, Zhang H, Li S, Zou Y, Li T, Liu J, Ding P, Mu Y, Tang H, Deng M, Liu Y, Jiang Q, Chen G, Kang H, Li W, Pu Z, Wei Y, Zheng Y, Lan X. 2019. Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong 16. BMC Genetics20, 77.

Ramirez-Gonzalez R H, Borrill P, Lang D, Harrington S A, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson S J, Cory A T, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout C J, et al. 2018. The transcriptional landscape of polyploid wheat. Science361, 6403.

Su Z, Hao C, Wang L, Dong Y, Zhang X. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics122, 211–223.

Sun Y, Lyu M, Han H, Zhou S, Lu Y, Liu W, Yang X, Li X, Zhang J, Liu X, Li L. 2021. Identification and fine mapping of alien fragments associated with enhanced grain weight from Agropyron cristatum chromosome 7P in common wheat backgrounds. Theoretical and Applied Genetics134, 3759–3772.

Wang W, Pan Q, Tian B, He F, Chen Y, Bai G, Akhunova A, Trick H N, Akhunov E. 2019. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. The Plant Journal100, 251–264.

Wang Y, Hou J, Liu H, Li T, Wang K, Hao C, Liu H, Zhang X. 2019. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. Journal of Experimental Botany70, 1497–1511.

Wu Q H, Chen Y X, Zhou S H, Fu L, Chen J J, Xiao Y, Zhang D, Ouyang S H, Zhao X J, Cui Y, Zhang D Y, Liang Y, Wang Z Z, Xie J Z, Qin J X, Wang G X, Li D L, Huang Y L, Yu M H, Lu P, et al. 2015. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817×Beinong 6. PLoS ONE10, e0118144.

Wu X Y, Cheng R R, Xue S L, Kong Z X, Wan H S, Li G Q, Huang Y L, Jia H Y, Jia J Z, Zhang L X, Ma Z Q. 2014. Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Molecular Breeding33, 129–138.

Xu H, Zhang R, Wang M, Li L, Yan L, Wang Z, Zhu J, Chen X, Zhao A, Su Z, Xing J, Sun Q, Ni Z. 2021. Identification and characterization of QTL for spike morphological traits, plant height and heading date derived from the D genome of natural and resynthetic allohexaploid wheat. Theoretical and Applied Genetics135, 389–403.

Yan L, Liang F, Xu H, Zhang X, Zhai H, Sun Q, Ni Z. 2017. Identification of QTL for grain size and shape on the D genome of natural and synthetic allohexaploid wheats with near-identical AABB genomes. Frontiers in Plant Science8, 1705.

Yang J, Zhou Y, Wu Q, Chen Y, Zhang P, Zhang Y, Hu W, Wang X, Zhao H, Dong L, Han J, Liu Z, Cao T. 2019. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theoretical and Applied Genetics132, 1799–1814.

Yang L, Zhao D, Meng Z, Xu K, Yan J, Xia X, Cao S, Tian Y, He Z, Zhang Y. 2020. QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping. Theoretical and Applied Genetics133, 857–872.

Zhang H, Zhu B, Qi B, Gou X, Dong Y, Xu C, Zhang B, Huang W, Liu C, Wang X, Yang C, Zhou H, Kashkush K, Feldman M, Wendel J F, Liu B. 2014. Evolution of the BBAA component of bread wheat during its history at the allohexaploid level. The Plant Cell26, 2761–2776.

Zhang J, Liu W, Lu Y, Liu Q, Yang X, Li X, Li L. 2017. A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences. Scientific Reports7, 11942.

Zhang Y, Liu J, Xia X, He Z. 2014. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding34, 1097–1107.

Zhao D, Yang L, Liu D, Zeng J, Cao S, Xia X, Yan J, Song X, He Z, Zhang Y. 2021. Fine mapping and validation of a major QTL for grain weight on chromosome 5B in bread wheat. Theoretical and Applied Genetics134, 3731–3741.

Zhu T, Wang L, Rimbert H, Rodriguez J C, Deal K R, De Oliveira R, Choulet F, Keeble-Gagnere G, Tibbits J, Rogers J, Eversole K, Appels R, Gu Y Q, Mascher M, Dvorak J, Luo M C. 2021. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal107, 303–314.

[1] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[2] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[3] HU Wen-jing, FU Lu-ping, GAO De-rong, LI Dong-sheng, LIAO Sen, LU Cheng-bin. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15[J]. >Journal of Integrative Agriculture, 2023, 22(2): 360-370.
[4] ZHANG Guang-xin, ZHAO De-hao, FAN Heng-zhi, LIU Shi-ju, LIAO Yun-cheng, HAN Juan. Combining controlled-release urea and normal urea with appropriate nitrogen application rate to reduce wheat stem lodging risk and increase grain yield and yield stability[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3006-3021.
[5] HUANG Feng, LI Xuan-shuang, DU Xiao-yu, LI Shun-cheng, LI Nan-nan, LÜ Yong-jun, ZOU Shao-kui, ZHANG Qian, WANG Li-na, NI Zhong-fu, HAN Yu-lin, XING Jie-wen. SNP-based identification of QTLs for thousand-grain weight and related traits in wheat 8762/Keyi 5214 DH lines[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2949-2960.
[6] LI Si-ping, ZENG Lu-sheng, SU Zhong-liang. Wheat growth, photosynthesis and physiological characteristics under different soil Zn levels[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1927-1940.
[7] ZHANG Hai-feng, Tofazzal ISLAM, LIU Wen-de. Integrated pest management programme for cereal blast fungus Magnaporthe oryza[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3420-3433.
[8] ZHAO Lai-bin, XIE Die, HUANG Lei, ZHANG Shu-jie, LUO Jiang-tao, JIANG Bo, NING Shun-zong, ZHANG Lian-quan, YUAN Zhong-wei, WANG Ji-rui, ZHENG You-liang, LIU Deng-cai, HAO Ming. Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2333-2342.
[9] LI Si-nan, CHEN Wen, MA Xin-yao, TIAN Xia-xia, LIU Yao, HUANG Li-li, KANG Zhen-sheng, ZHAO Jie. Identification of eight Berberis species from the Yunnan-Guizhou plateau as aecial hosts for Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1563-1569.
[10] LIU Yang, LI Yu-xiang, LI Yi-xiang, TIAN Zhong-wei, HU Jin-ling, Steve ADKINS, DAI Ting-bo. Changes of oxidative metabolism in the roots of wheat (Triticum aestivum L.) seedlings in response to elevated ammonium concentrations[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1216-1228.
[11] LIU Hang, TANG Hua-ping, LUO Wei, MU Yang, JIANG Qian-tao, LIU Ya-xi, CHEN Guo-yue, WANG Ji-rui, ZHENG Zhi, QI Peng-fei, JIANG Yun-feng, CUI Fa, SONG Yin-ming, YAN Gui-jun, WEI Yuming, LAN Xiu-jin, ZHENG You-liang, MA Jian. Genetic dissection of wheat uppermost-internode diameter and its association with agronomic traits in five recombinant inbred line populations at various field environments[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2849-2861.
[12] LIU Da-zhong, YANG Fei-fei, LIU Sheng-ping. Estimating wheat fractional vegetation cover using a density peak k-means algorithm based on hyperspectral image data[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2880-2891.
[13] XIAO Jing-xiu, ZHU Ying-an, BAI Wen-lian, LIU Zhen-yang, TANG Li, ZHENG Yi. Yield performance and optimal nitrogen and phosphorus application rates in wheat and faba bean intercropping[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3012-3025.
[14] PAN Li-jun, LU Lin, LIU Yu-ping, WEN Sheng-xian, ZHANG Zeng-yan. The M43 domain-containing metalloprotease RcMEP1 in Rhizoctonia cerealis is a pathogenicity factor during the fungus infection to wheat[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2044-2055.
[15] ZHOU Chun-yun, XIONG Hong-chun, LI Yu-ting, GUO Hui-jun, XIE Yong-dun, ZHAO Lin-shu, GU Jiayu, ZHAO Shi-rong, DING Yu-ping, SONG Xi-yun, LIU Lu-xiang. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1721-1730.
No Suggested Reading articles found!