Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 2923-2940    DOI: 10.1016/j.jia.2024.03.034
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Quantifying source–sink relationships in leaf-color modified rice genotypes during grain filling
Zhenxiang Zhou1, Paul C. Struik1, Junfei Gu2, Peter E. L. van der Putten1, Zhiqin Wang2, Jianchang Yang2#, Xinyou Yin1#
1 Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen 6700 AK, The Netherlands
2 College of Agriculture, Yangzhou University, Yangzhou 225009, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
【研究意义与科学问题】叶色修饰会影响冠层光合作用,从而对水稻产量及产量构成有潜在影响。 此外,通过作物管理调节源库关系已被证明是提高作物生产力的有效策略。本研究旨在调查叶色修饰是否以及如何改变源库关系,以及当前的作物栽培实践是否仍然适用于叶色修饰后的基因型。 【实验材料与方法】定期收集来自四种不同遗传背景的水稻基因型及其叶色(“持绿”或“黄化”)变体的总生物量和氮积累数据进行分析,并使用最近建立的模型方法来量化其灌浆期间源库平衡与否。 【实验结果】在所有叶色变体基因型中,只有一种黄叶变体显示出比其对照基因型更高的源容量。 这一现象与氮素的统筹分配有关。根本原因是该基因型减少了开花前的氮吸收,导致花后土壤氮含量充足并增加了花后氮吸收,进而延长了花后功能性叶氮持续时间。密度实验表明,当前的管理实践(种植密度不足且施氮量过多)不适合水稻黄叶基因型,最终限制了其产量潜力。 【实验结论】叶色修饰通过调节花前与花后氮收支平衡以及源库器官之间的氮素迁移来影响水稻的源库关系。 为了更好地利用叶色修饰来提高作物生产力,有必要进一步调整作物生产管理实践。


Abstract  
Leaf-color modification can affect canopy photosynthesis, with potential effects on rice yield and yield components.  Modulating source–sink relationships through crop management is often used to improve crop productivity.  This study investigated whether and how modifying leaf color alters source–sink relationships and whether current crop cultivation practices remain applicable for leaf-color modified genotypes.  Periodically collected data of total biomass and nitrogen (N) accumulation in rice genotypes of four genetic backgrounds and their leaf-color modified variants (greener or yellower) were analyzed, using a recently established modelling method to quantify the source–sink (im)balance during grain filling.  Among all leaf-color variants, only one yellower-leaf variant showed a higher source capacity than its normal genotype.  This was associated with greater post-flowering N-uptake that prolonged the functional leaf-N duration, and this greater post-flowering N-uptake was possible because of reduced pre-flowering N-uptake.  A density experiment showed that current management practices (insufficient planting density accompanied by abundant N application) are unsuitable for the yellower-leaf genotype, ultimately limiting its yield potential.  Leaf-color modification affects source–sink relationships by regulating the N trade-off between pre-and post-flowering uptake, as well as N translocation between source and sink organs.  To best exploit leaf-color modification for improving crop productivity, adjustments of crop management practices are required.  
Keywords:  source–sink relationship       biomass        nitrogen        Oryza sativa        leaf-colour modification  
Received: 28 September 2023   Accepted: 01 February 2024
Fund: Zhenxiang Zhou thanks the China Scholar Council (CSC) for funding his Ph D fellowship. 
About author:  Zhenxiang Zhou, Tel: +31-629758844, E-mail: Zhenxiang.zhou@wur.nl; #Correspondence Jianchang Yang, Tel: +86-514-87979317, E-mail: jcyang@yzu.edu.cn; Xinyou Yin, Tel: +31-629758844, E-mail: xinyou.yin@wur.nl

Cite this article: 

Zhenxiang Zhou, Paul C. Struik, Junfei Gu, Peter E. L. van der Putten, Zhiqin Wang, Jianchang Yang, Xinyou Yin. 2024. Quantifying source–sink relationships in leaf-color modified rice genotypes during grain filling. Journal of Integrative Agriculture, 23(9): 2923-2940.

Asseng S, Kassie B T, Labra M H, Amador C, Calderini D F. 2017. Simulating the impact of source–sink manipulations in wheat. Field Crops Research202, 47–56.

Barnett K H, Pearce R B. 1983. Sourcesink ratio alteration and its effect on physiological parameters in maize. Crop Science23, 294–299.

Bonelli L E, Monzon J P, Cerrudo A, Rizzalli R H, Andrade F H. 2016. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Research198, 215–225.

Burgess A J, Masclaux-Daubresse C, Strittmatter G, Weber A P M, Taylor S H, Harbinson J, Yin X, Long S, Paul M J, Westhoff P, Loreto F, Ceriotti A, Saltenis V L R, Pribil M, Nacry P, Scharff L B, Jensen P E, Muller B, Cohan J P, Foulkes J, et al. 2023. Improving crop yield potential: Underlying biological processes and future prospects. Food and Energy Security12, 1–29.

Christopher M, Chenu K, Jennings R, Fletcher S, Butler D, Borrell A, Christopher J. 2018. QTL for stay-green traits in wheat in well-watered and water-limited environments. Field Crops Research217, 32–44.

Deléens E, Cliquet J B, Prioul J L. 1994. Use of 13C and 15N plant label near natural abundance for monitoring carbon and nitrogen partitioning. Functional Plant Biology21, 133–146.

Derkx A P, Orford S, Griffiths S, Foulkes M J, Hawkesford M J. 2012. Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning. Journal of Integrative Plant Biology54, 555–566.

Dobermann A, Cassman K G. 2004. Environmental dimensions of fertilizer nitrogen: What can be done to increase nitrogen use efficiency and ensure global food security? In: Mosier A, Syers J K, Freney J R, et al., eds., Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment. Island Press, London. pp. 260–278.

Engels C, Kirkby E, White P. 2011. Mineral nutrition, yield and source–sink relationships. In: Marschner’s Mineral Nutrition of Higher Plants. Academic Press. pp. 85–133.

Fan P, Ming B, Evers J B, Li Y, Li S, Xie R, Anten N P R. 2023. Nitrogen availability determines the vertical patterns of accumulation, partitioning, and reallocation of dry matter and nitrogen in maize. Field Crops Research297, 108927.

Fu J, Huang Z, Wang Z, Yang J, Zhang J. 2011. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Research123, 170–182.

Gaju O, Allard V, Martre P, Le Gouis J, Moreau D, Bogard M, Hubbart S, Foulkes M J. 2014. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research155, 213–223.

Gebbing T, Schnyder H, Kühbauch W. 1999. The utilization of pre-anthesis reserves in grain filling of wheat. Assessment by steady-state 13CO2/12CO2 labelling. Plant, Cell & Environment22, 851–858.

Gu J, Zhou Z, Li Z, Chen Y, Wang Z, Zhang H. 2017. Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Research200, 58–70.

Hou P, Liu Y, Liu W, Liu G, Xie R, Wang K, Ming B, Wang Y, Zhao R, Zhang W, Wang Y, Bian S, Ren H, Zhao X, Liu P, Chang J, Zhang G, Liu J, Yuan L, Zhao H, et al. 2020. How to increase maize production without extra nitrogen input. Resources, Conservation and Recycling160, 104913.

Kumar R, Bishop E, Bridges W C, Tharayil N, Sekhon R S. 2019. Sugar partitioning and source–sink interaction are key determinants of leaf senescence in maize. Plant, Cell & Environment42, 2597–2611.

Ladha J K, Jat M L, Stirling C M, Chakraborty D, Pradhan P, Krupnik T J, Sapkota T B, Pathak H, Rana D S, Tesfaye K, Gerard B. 2020. Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Advances in Agronomy163, 39–116.

Li G, Cheng G, Li L, Lu D, Lu W. 2020. Effects of slow-released fertilizer on maize yield, biomass production, and source–sink ratio at different densities. Journal of Plant Nutrition43, 725−738.

Liao M, Fillery I R P, Palta J A. 2004. Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Functional Plant Biology31, 121–129.

Liu G, Yang Y, Guo X, Liu W, Xie R, Ming B, Xue J, Wang K, Li S, Hou P. 2022. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha–1Field Crops Research283, 108544.

Liu K, Meng M, Zhang T, Chen Y, Yuan H, Su T. 2023. Quantitative analysis of source–sink relationships in two potato varieties under different nitrogen application rates. Agronomy13, 1–19.

Liu T, Shao D, Kovi M R, Xing Y. 2010. Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice (Oryza sativa L.). Theoretical and Applied Genetics120, 933–942.

Long S P, Zhu X G, Naidu S L, Ort D R. 2006. Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment29, 315–330.

Malnou C S, Jaggard K W, Sparkes D L. 2008. Nitrogen fertilizer and the efficiency of the sugar beet crop in late summer. European Journal of Agronomy28, 47–56.

Maltese N E, Melchiori R J M, Maddonni G A, Ferreyra J M, Caviglia O P. 2019. Nitrogen economy of early and late-sown maize crops. Field Crops Research231, 40–50.

McCormick A J, Cramer M D, Watt D A. 2006. Sink strength regulates photosynthesis in sugarcane. New Phytologist171, 759–770.

Mu X, Chen Q, Chen F, Yuan L, Mi G. 2018. Dynamic remobilization of leaf nitrogen components in relation to photosynthetic rate during grain filling in maize. Plant Physiology and Biochemistry129, 27–34.

Nehe A S, Misra S, Murchie E H, Chinnathambi K, Singh Tyagi B, Foulkes M J. 2020. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and protein concentration in Indian wheat cultivars. Field Crops Research251, 107778.

Ohsumi A, Takai T, Ida M, Yamamoto T, Arai-Sanoh Y, Yano M, Ando T, Kondo M. 2011. Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. Field Crops Research120, 68–75.

Ort D R, Merchant S S, Alric J, Barkan A, Blankenship R E, Bock R, Croce R, Hanson M R, Hibberd J M, Long S P, Moore T A, Moroney J, Niyogi K K, Parry M A J, Peralta-Yahya P P, Prince R C, Redding K E, Spalding M H, van Wijk K J, Vermaas W F J, et al. 2015. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences of the United States of America112, 8529–8536.

Ort D R, Zhu X, Melis A. 2011. Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiology155, 79–85.

Patra M. 2020. A review : Stay-green trait and its physiological and genetic basis of yield variation in rice. Journal of Pharmacognosy and Phytochemistry9, 1311–1321.

Paul M J, Foyer C H. 2001. Sink regulation of photosynthesis. Journal of Experimental Botany52, 1383–1400.

Peng S, Laza R C, Visperas R M, Sanico A L, Cassman K G, Khush G S. 2000. Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Science40, 307–314.

Penning De Vries F W T P, Brunsting A H M, Van Laar H H. 1974. Products, requirements and efficiency of biosynthesis a quantitative approach. Journal of Theoretical Biology45, 339–377.

Penning de Vries F W T P, Jansen D M, ten Berge H F M, Bakema A. 1989. Simulation of ecophysiological processes of growth in several annual crops. Centre for Agricultural Publishing and Documentation (PUDOC), The Netherlands.

Rajcan I, Tollenaar M. 1999. Source:sink ratio and leaf senescence in maize: II. Nitrogen metabolism during grain filling. Field Crops Research60, 255–265.

Ray D K, Mueller N D, West P C, Foley J A. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS ONE8, e66428.

Reynolds M P, Pellegrineschi A, Skovmand B. 2005. Sink-limitation to yield and biomass: A summary of some investigations in spring wheat. Annals of Applied Biology146, 39–49.

Shao L, Liu Z, Li H, Zhang Y, Dong M, Guo X, Zhang H, Huang B, Ni R, Li G, Cai C, Chen W, Luo W, Yin X. 2021. The impact of global dimming on crop yields is determined by the source–sink imbalance of carbon during grain filling. Global Change Biology27, 689–708.

Shi W, Xiao G, Struik P C, Jagadish K S V, Yin X. 2017. Quantifying source–sink relationships of rice under high night-time temperature combined with two nitrogen levels. Field Crops Research202, 36–46.

Sinclair T R, Rufty T W, Lewis R S. 2019. Increasing photosynthesis: Unlikely solution for world food problem. Trends in Plant Science24, 1032–1039.

Slattery R A, Ort D R. 2021. Perspectives on improving light distribution and light use efficiency in crop canopies. Plant Physiology185, 34–48.

Smith M R, Rao I M, Merchant A. 2018. Source–sink relationships in crop plants and their influence on yield development and nutritional quality. Frontiers in Plant Science9, 1889.

Ta C T, Weiland R T. 1992. Nitrogen partitioning in maize during ear development. Crop Science32, 443–451.

Thomas H, Ougham H. 2014. The stay-green trait. Journal of Experimental Botany65, 3889–3900.

Tillier L C, Murchie E H, Sparkes D L. 2023. Does canopy angle influence radiation use efficiency of sugar beet? Field Crops Research293, 108841.

Walker B J, Drewry D T, Slattery R A, VanLoocke A, Cho Y B, Ort D R. 2018. Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiology176, 1215–1232.

Wardlaw I F. 1990. The control of carbon partitioning in plants. New Phytologist116, 341–381.

Wei H, Meng T, Li X, Dai Q, Zhang H, Yin X. 2018. Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Research215, 23–38.

Wichern F, Eberhardt E, Mayer J, Joergensen R G, Müller T. 2008. Nitrogen rhizodeposition in agricultural crops: Methods, estimates and future prospects. Soil Biology and Biochemistry40, 30–48.

Won P L P, Kanno N, Banayo N P M, Bueno C S, Sta Cruz P, Kato Y. 2022. Source–sink relationships in short-duration and hybrid rice cultivars in tropical Asia. Field Crops Research282, 108485.

Xu X, Zhang Y, Li J, Zhang M, Zhou X, Zhou S, Wang Z. 2018. Optimizing single irrigation scheme to improve water use efficiency by manipulating winter wheat sink–source relationships in Northern China Plain. PLoS ONE13, e0193895.

Yang J, Zhang J. 2010. Grain-filling problem in “super” rice. Journal of Experimental Botany61, 1–5.

Yin X, Guo W, Spiertz J H. 2009. A quantitative approach to characterize sink–source relationships during grain filling in contrasting wheat genotypes. Field Crops Research114, 119–126.

Yin X, Goudriaan J, Lantinga E A, Vos J, Spiertz H J. 2003. A flexible sigmoid function of determinate growth. Annals of Botany91, 361–371.

Yin X, Kropff M J, McLaren G, Visperas R M. 1995. A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology77, 1–16.

Yin X, van Laar H H. 2005. Crop systems dynamics: An ecophysiological simulation model of genotype-by-environment interactions. Wageningen Academic Publishers, The Netherlands.

Zhang D, Sun Z, Feng L, Bai W, Yang N, Zhang Z, Du G, Feng C, Cai Q, Wang Q, Zhang Y, Wang R, Arshad A, Hao X, Sun M, Gao Z, Zhang L. 2020. Maize plant density affects yield, growth and source–sink relationship of crops in maize/peanut intercropping. Field Crops Research257, 107926.

Zhang H, Jing W, Zhao B, Wang W, Xu Y, Zhang W, Gu J, Liu L, Wang Z, Yang J. 2021. Alternative fertilizer and irrigation practices improve rice yield and resource use efficiency by regulating source–sink relationships. Field Crops Research265, 108124.

Zhang H, Yu C, Kong X, Hou D, Gu J, Liu L, Wang Z, Yang J. 2018. Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice. Field Crops Research215, 1–11.

Zhang L, Zhang Z, Luo Y, Cao J, Li Z. 2020. Optimizing genotype–environment–management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Science of the Total Environment728, 1–12.

Zhang S, Wang H, Fan J, Zhang F, Cheng M, Yang L, Ji Q, Li Z. 2022. Quantifying source–sink relationships of drip-fertigated potato under various water and potassium supplies. Field Crops Research285, 108604.

Zhou Z, Struik P C, Gu J, van der Putten P E L, Wang Z, Yin X, Yang J. 2023. Leaf-colour modification affects canopy photosynthesis, dry-matter accumulation and yield traits in rice. Field Crops Research290, 108746.

[1] LI Wen-qian, HAN Ming-ming, PANG Dang-wei, CHEN Jin, WANG Yuan-yuan, DONG He-he, CHANG Yong-lan, JIN Min, LUO Yong-li, LI Yong, WANG Zhen-lin. Characteristics of lodging resistance of high-yield winter wheat as affected by nitrogen rate and irrigation managements[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1290-1309.
[2] WU Ya-wei, ZHAO Bo, LI Xiao-long, LIU Qin-lin, FENG Dong-ju, LAN Tian-qiong, KONG Fan-lei, LI Qiang, YUAN Ji-chao. Nitrogen application affects maize grain filling by regulating grain water relations[J]. >Journal of Integrative Agriculture, 2022, 21(4): 977-994.
[3] ZHOU Lei, XU Sheng-tao, Carlos M. MONREAL, Neil B. MCLAUGHLIN, ZHAO Bao-ping, LIU Jing-hui, HAO Guo-cheng. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region[J]. >Journal of Integrative Agriculture, 2022, 21(1): 208-221.
No Suggested Reading articles found!