Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (4): 999-1008    DOI: 10.1016/j.jia.2022.08.020
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters

JIANG Yun1, 2, 3*, WANG De-li1, 3*, HAO Ming1, 3, ZHANG Jie2, LIU Deng-cai1, 3#

1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R.China

2 Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, P.R.China

3 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

从野生近缘种中发掘新的高分子量谷蛋白亚基HMW-GS是改良小麦加工品质的有效途径。本研究旨在鉴定一份小麦-粘果山羊草渐渗系N124的染色体组成,并评价其对小麦品质相关性状的影响。荧光原位杂交FISH)核型分析表明,N124是一个1Uk(1A)二体代换系。十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和反相高效液相色谱(RP-HPLC发现N124表达了两个源自粘果山羊草的HMW-GSPacBio RNA测序和系统发育分析证实了这两个HMW-GS分别为UkxUky。与小麦亲本相比,N124除穗粒数较少外,无明显农艺性状缺陷,同时多项主要品质指标均有提高,表明N124可作为小麦品质改良的桥梁材料加以利用。



Abstract  

Exploring novel high molecular weight glutenin subunits (HMW-GSs) from wild related species is a strategy to improve wheat processing quality.  The objective of the present investigation was to identify the chromosomes of the wheat-alien introgression line N124, derived from the hybridization between Triticum aestivum with Aegilops kotschyi, and characterize the effects on quality-related traits.  Fluorescence in situ hybridization karyotypes showed that N124 is a disomic 1Uk(1A) substitution line.  Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and reversed-phase high-performance liquid chromatography verified N124 expressed two HMW-GSs of the Ae. kotschyi parent.  PacBio RNA sequencing and phylogenetic analysis confirmed that the two HMW-GSs were Ukx and Uky.  Compared to the wheat parent, the substitution line had no obvious agronomic defects except fewer grains per spike but improved several major quality parameters.  It can be served as a donor or bridge material for wheat quality improvement.

Keywords:  Aegilops kotschyi       common wheat       1Uk(1A) substitution line       HMW-GS       processing quality  
Received: 25 January 2022   Accepted: 16 March 2022
Fund: 

This work was supported by the National Natural Science Foundation of China (91935303), the Sichuan Province Science and Technology Department Crops Breeding Project, China (2021YFYZ0002), the Crop Molecular Breeding Platform of Sichuan Province, China (2021YFYZ0027), the Foundation for Youth of Sichuan Academy of Agricultural Sciences and the Sichuan Provincial Agricultural Department Innovative Research Team, China (wheat-10).

About author:  JIANG Yun, E-mail: 85197544@qq.com; #Correspondence LIU Deng-cai, Tel/Fax: +86-28-86290004, E-mail: dcliu7@ sicau.edu.cn * These authors contributed equally to this study.

Cite this article: 

JIANG Yun, WANG De-li, HAO Ming, ZHANG Jie, LIU Deng-cai. 2023.

Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters . Journal of Integrative Agriculture, 22(4): 999-1008.

Badaeva E D, Amosova A V, Samatadze T E, Zoshchuk S A, Shostak N G, Chikida N N, Zelenin A V, Raupp W J, Friebe B, Gill B S. 2004. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Systematics and Evolution, 246, 45–76.
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An integrative Toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194–1202.
Chen W J, Fan X, Zhang B, Liu B L, Yan Z H, Zhang L Q, Yuan Z W, Zheng Y L, Zhang H G, Liu D C. 2012. Novel and ancient HMW glutenin genes from Aegilops tauschii and their phylogenetic positions. Genetic Resources & Crop Evolution, 59, 1649–1657.
Cui D, Wang J, Li M, Lu Y, Yan Y. 2019. Functional assessment and SNP-based molecular marker development of two 1Sl-encoded HMW glutenin subunits in Aegilops longissima L. Molecular Breeding, 39, 120.
Dai S, Zhao L, Xue X, Jia Y, Liu D, Pu Z, Zheng Y, Yan Z. 2015. Analysis of high-molecular-weight glutenin subunits in five amphidiploids and their parental diploid species Aegilops umbellulata and Aegilops uniaristata. Plant Genetic Resources, 13, 186–189.
Dai S F, Chen H X, Li H Y, Yang W J, Zhai Z, Liu Q Y, Li J, Yan Z H. 2022. Variations in the quality parameters and gluten proteins in synthetic hexaploid wheats solely expressing the Glu-D1 locus. Journal of Integrative Agriculture, 21, 1877–1885.
Dai S F, Xu D Y, Wen Z J, Song Z P, Yan Z H. 2018. Characterization of a novel 4.0-kb y-type HMW-GS from Eremopyrum distans. Cereal Research Communications, 46, 499–509.
Danilova T V, Friebe B, Gill B S. 2012. Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma, 121, 597–611.
Delorean E, Gao L L, Lopez J F C, Consortium T O W W, Wulff B, Ibba M I, Poland J. 2021. High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Communications Biology, 4, 1242.
Du X, Jia Z, Yu Y, Wang S, Che B, Ni F, Bao Y. 2019. A wheat–Aegilops umbellulata addition line improves wheat agronomic traits and processing quality. Breeding Science, 69, 503–507.
Dvorak J, Luo M C, Yang Z L, Zhang H B. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics, 97, 657–670.
Feng B, Xu Z B, Wang X, Jiang F, Zhao G J, Xiang C, Wang T. 2014. Molecular characterization of a novel HMW glutenin subunit Dx2.3*t from Aegilops tauschii. Cereal Research Communications, 42, 503–513.
Garg M, Tanaka H, Ishikawa N, Takata K, Tsujimoto H. 2009. A novel pair of HMW glutenin subunits from Aegilops searsii improves quality of hexaploid wheat. Cereal Chemistry, 86, 26–32.
Kimber G, Yen Y. 1988. Analysis of pivotal-differential evolutionary patterns. Proceedings of the National Academy of Sciences of the United States of America, 85, 9106–9108.
Guo L, Yu L, Tong J, Zhao Y, Yang Y, Ma Y, Cui L, Hu Y, Wang Z, Gao X. 2021. Addition of Aegilops geniculata 1Ug chromosome improves the dough rheological properties by changing the composition and micro-structure of gluten. Food Chemistry, 358, 129850.
Hao M, Luo J T, Yang M, Zhang L Q, Yan Z H, Yuan Z W, Zheng Y L, Zhang H G, Liu D C. 2011. Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome, 54, 959–964.
Hou W, Wei F, Yu G, Du X, Ren M. 2017. Cloning and functional analysis of a novel x-type high-molecular-weight glutenin subunit with altered cysteine residues from Aegilops umbellulata. Crop & Pasture Science, 68, 409–414. 
István M, Marta C, Annamária S, Elena B, Márta M. 2011. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Annals of Botany, 107, 65–76.
Johansson E, Henriksson P, Svensson G, Heneen W K. 1993. Detection, chromosomal location and evaluation of the functional value of a novel high Mr glutenin subunit found in Swedish wheats. Journal of Cereal Science, 17, 237–245.
Lawrence G J, Shepherd K W. 1981. Chromosomal location of genes controlling seed proteins in species related to wheat. Theoretical and Applied Genetics, 59, 25–31.
Li J, Wan H S, Yang W Y. 2014. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. Journal of Systematics and Evolution, 52, 735–742.
Liu D C, Hao M, Li A L, Zhang L Q, Zheng Y L, Mao L. 2016. Allopolyploidy and interspecific hybridization for wheat improvement. In: Polyploidy and Hybridization for Crop Improvement. CRC Press, USA. pp. 27–52.
Liu Z, Yan Z, Wan Y, Liu K, Zheng Y, Wang D. 2003. Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theoretical and Applied Genetics, 106, 1368–1378.
Ma C, Yang Y, Li X, Pei G, Yan Y. 2013. Molecular cloning and characterization of six novel HMW-GS genes from Aegilops speltoides and Aegilops kotschyi. Plant Breeding, 132, 284–289.
Margiotta B, Urbano M, Colaprico G, Johansson E, Buonocore F, D’Ovidio R, Lafiandra D. 1996. Detection of y-type subunit at the Glu-A1 locus in some Swedish bread wheat lines. Journal of Cereal Science, 23, 203–212.
Payne P I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annual Review of Plant Physiology, 38, 141–153.
Rawat N, Neelam K, Tiwari V K, Randhawa G S, Friebe B, Gill B S, Dhaliwal H S. 2011. Development and molecular characterization of wheat–Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome, 54, 943–952.
Roy N, Islam S, Ma J, Lu M, Torok K, Tomoskozi S, Bekes F, Lafiandra D, Appels R, Ma W. 2018. Expressed Ay HMW glutenin subunit in Australian wheat cultivars indicates a positive effect on wheat quality. Journal of Cereal Science, 79, 494–500.
Roy N, Islam S, Yu Z, Lu M, Lafiandra D, Zhao Y, Anwar M, Mayer J E, Ma W. 2020. Introgression of an expressed HMW 1Ay glutenin subunit allele into bread wheat cv. Lincoln increases grain protein content and bread making quality without yield penalty. Theoretical and Applied Genetics, 133, 517–528.
Schneider A, Linc G, Molnár I, Molnár-Láng M. 2005. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat–Aegilops biuncialis disomic addition lines. Genome, 48, 1070–1082.
Shavrukov Y. 2016. Comparison of SNP and CAPS markers application in genetic research in wheat and barley. BMC Plant Biology, 16, 47–51.
Singh J, Sheikh I, Sharma P, Kumar S, Dhaliwal H S. 2016. Transfer of HMW glutenin subunits from Aegilops kotschyi to wheat through radiation hybridization. Journal of Food Science & Technology, 53, 3543–3549.
Tang Z, Yang Z, Fu S. 2014. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa–535, pTa 71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics, 55, 313–318.
Waterhouse A M, Procter J B, Martin D, Clamp M, Barton G J. 2009. Jalview version 2: A multiple sequence alignment and analysis workbench. Bioinformatics, 25, 1189–1191.
Wu J S, Lu X B, Yu Z T, Han C X, Li X H, Prodanovic S, Yan Y M. 2017. Effects of Glu-1 and Glu-3 allelic variations on wheat glutenin macropolymer (GMP) content as revealed by size-exclusion high performance liquid chromatography (SE-HPLC). Genetika, 49, 677–691.
Xie R L, Wan Y F, Zhang Y, Wang D W. 2001. HMW glutenin subunits in multiploid Aegilops species: composition analysis and molecular cloning of coding sequences. Chinese Science Bulletin, 46, 309–313. 
Yan Z H, Zheng Y L, Dai S F, Liu D C. 2005. Identification and molecular cloning of two novel y-type high-molecular-weight glutenin subunit genes from Aegilops variables. Acta Agriculturae Boreali-occidentalis Sinica, 14, 1–5. (in Chinese)
Yang W J, Shu H L, Yan Z H, Liu D C, Zhou Y H. 2005. Identification and molecular cytology analysis of novel wheat germplasm expressing seven high molecular weight glutenin subunits. Acta Genetica Sinica, 32, 1184–1190.(in Chinese)
Zhang H, Bian Y, Gou X, Dong Y, Rustgi S, Zhang B, Xu C, Li N, Qi B, Han F. 2013. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. Proceedings of the National Academy of Sciences of the United States of America, 110, 19466–19471.
Zhang Y, Hu M, Liu Q, Sun L, Chen X, Lv L, Liu Y, Jia X, Li H. 2018. Deletion of high-molecular-weight glutenin subunits in wheat significantly reduced dough strength and bread-baking quality. BMC Plant Biology, 18, 319.
Zhao L B, Xie D, Huang L, Zhang S J, Luo J T, Jiang B, Ning S Z, Zhang L Q, Yuan Z W, Wang J R, Zheng Y L, Liu D C, Hao M. 2021. Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements. Journal of Integrative Agriculture, 20, 2333–2342.
Zhou J P, Yao C H, Yang E N, Yin M Q, Liu C, Ren Z L. 2014. Characterization of a new wheat–Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits. Genetics and Molecular Research, 13, 660–669.
[1] WANG Yan, GUO Zhen-ru, CHEN Qing, LI Yang, ZHAO Kan, WAN Yong-fang, Malcolm J. HAWKESFORD, JIANG Yun-feng, KONG Li, PU Zhi-en, DENG Mei, JIANG Qian-tao, LAN Xiu-jin, WANG Ji-rui, CHEN Guo-yue, MA Jian, ZHENG You-liang, WEI Yu-ming, QI Peng-fei. Effect of high-molecular-weight glutenin subunit Dy10 on wheat dough properties and end-use quality[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1609-1617.
[2] LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1291-1307.
[3] LIU Yun-chuan, WANG Xiao-lu, HAO Chen-yang, IRSHAD Ahsan, LI Tian, LIU Hong-xia, HOU Jian, ZHANG Xue-yong. TaABI19 positively regulates grain development in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(1): 41-51.
[4] LIU Da-tong, ZHANG Xiao, JIANG Wei, LI Man, WU Xu-jiang, GAO De-rong, BIE Tong-de, LU Cheng-bin. Influence of high-molecular-weight glutenin subunit deletions at the Glu-A1 and Glu-D1 loci on protein body development, protein components and dough properties of wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1867-1876.
[5] WU Tian-ci, ZHU Xiu-liang, LÜ Liang-jie, CHEN Xi-yong, XU Gang-biao, ZHANG Zeng-yan. The wheat receptor-like cytoplasmic kinase TaRLCK1B is required for host immune response to the necrotrophic pathogen Rhizoctonia cerealis[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2616-2627.
[6] CHEN Hong-xin, HAN Hai-ming, LI Qing-feng, ZHANG Jin-peng, LU Yu-qing, YANG Xin-ming, LI Xiuquan, LIU Wei-hua, LI Li-hui. Identification and genetic analysis of multiple P chromosomes of Agropyron cristatum in the background of common wheat[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1697-1705.
[7] SUN Hao-jie, SONG Jing-jing, XIAO Jin, XU Tao, WEI Xing, YUAN Chun-xia, CAO Ai-zhong, XING Liping, WANG Hai-yan, WANG Xiu-e. Development of EST-PCR markers specific to the long arm of chromosome 6V of Dasypyrum villosum[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1720-1726.
[8] ZHANG Xiao, ZHANG Bo-qiao, WU Hong-ya, LU Cheng-bin, Lü Guo-feng, LIU Da-tong, LI Man,. Effect of high-molecular-weight glutenin subunit deletion on soft wheat quality properties and sugar-snap cookie quality estimated through near-isogenic lines[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1066-1073.
[9] CHAI Jian-fang, ZHANG Cui-mian, MA Xiu-ying, WANG Hai-bo. Molecular identification of ω-secalin gene expression activity in a wheat 1B/1R translocation cultivar[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2712-2718.
[10] ZHAO Pei, WANG Ke, LIN Zhi-shan, LIU Hui-yun, LI Xin, DU Li-pu, YAN Yue-ming, YE Xing-guo. A genetic evidence of chromosomal fragment from bridge parent existing in substitution lines between two common wheat varieties[J]. >Journal of Integrative Agriculture, 2016, 15(1): 10-17.
No Suggested Reading articles found!