Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2617-2631    DOI: 10.1016/j.jia.2023.04.017
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Dissecting the genetic basis of grain color and pre-harvest sprouting resistance in common wheat by association analysis

YAN Sheng-nan*, YU Zhao-yu*, GAO Wei, WANG Xu-yang, CAO Jia-jia, LU Jie, MA Chuan-xi, CHANG Cheng#, ZHANG Hai-ping#

Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs/College of Agronomy, Anhui Agricultural University, Hefei 230036, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

收获前穗发芽对小麦的品质和产量产生不利影响。籽粒颜色与小麦穗发芽抗性密切相关。然而,两者的遗传关系尚不清楚。本研究采用90K芯片对168个籽粒颜色和穗发芽抗性差异显著的小麦品种进行基因分型。基于混合线性模型的全基因组关联分析显示,67SNP标记(分布于29个位点与籽粒颜色显著关联,其中包括17个潜在的新位点,解释1.1-17.0%的表型变异。另外,100SNP标记(分布于54个位点)与穗发芽抗性显著关联,其中包括31个潜在的新位点,解释1.1-14.7%的表型变异。随后对籽粒颜色和穗发芽抗性的共定位位点Qgc.ahau-2B.3/Qphs.ahau-2B.42B和穗发芽抗性位点Qphs.ahau-5B.4(5B)分别开发CAPS标记2B-4485B-301利用171份中国微核心种质进一步验证了上述2CAPS标记与籽粒颜色和穗发芽抗性相关性。此外,基于小麦公共表达数据库、转录组测序数据以及基因等位变异分析结果,将编码谷氧还蛋白glutaredoxinTraesCS5B02G545100基因确定为Qphs.ahau-5B.4位点的潜在候选基因。进一步基于TraesCS5B02G545100基因CDS区域的SNP (T/C)变异,本文开发了一个CAPS标记CAPS-356利用411/红芒春21重组自交系(RILs)的高密度遗传连锁图谱检测到CAPS-356标记与一个新的穗发芽抗性QTL共定位,进一步支持了TraesCS5B02G545100Qphs.ahau-5B.4位点的潜在候选基因的假设。本文结果为Qphs.ahau-5B.4的图位克隆和白皮抗穗发芽品种的培育提供了有价值的参考信息。



Abstract  Pre-harvest sprouting (PHS) adversely affects wheat quality and yield, and grain color (GC) is associated with PHS resistance.  However, the genetic relationship between GC and PHS resistance remains unclear.  In this study, 168 wheat varieties (lines) with significant differences in GC and PHS resistance were genotyped using an Illumina 90K iSelect SNP array.  Genome-wide association study (GWAS) based on a mixed linear model showed that 67 marker-trait associations (MTAs) assigned to 29 loci, including 17 potentially novel loci, were significantly associated with GC, which explained 1.1–17.0% of the phenotypic variation.  In addition, 100 MTAs belonging to 54 loci, including 31 novel loci, were significantly associated with PHS resistance, which accounted for 1.1–14.7% of the phenotypic variation.  Subsequently, two cleaved amplified polymorphic sequences (CAPS) markers, 2B-448 on chromosome 2B and 5B-301 on chromosome 5B, were developed from the representative SNPs of the major common loci Qgc.ahau-2B.3/Qphs.ahau-2B.4 controlling GC/PHS resistance and PHS resistance locus Qphs.ahau-5B.4, respectively.  Further validation in 171 Chinese mini-core collections confirmed significant correlations of the two CAPS markers with GC and PHS resistance phenotypes under different environments (P<0.05).  Furthermore, the wheat public expression database, transcriptomic sequencing, and gene allelic variation analysis identified TraesCS5B02G545100, which encodes glutaredoxin, as a potential candidate gene linked to Qphs.ahau-5B.4.  The new CAPS marker CAPS-356 was then developed based on the SNP (T/C) in the coding sequences (CDS) region of TraesCS5B02G545100.  The high-density linkage map of the Jing 411/Hongmangchun 21 recombinant inbred lines (RILs) constructed based on specific locus amplified fragment sequencing markers showed that CAPS-356 collocated with a novel QTL for PHS resistance, supporting the role of TraesCS5B02G545100 as the potential candidate gene linked to Qphs.ahau-5B.4.  These results provide valuable information for the map-based cloning of Qphs.ahau-5B.4 and breeding of PHS resistant white-grained varieties.
Keywords:  common wheat        grain color        PHS resistance        GWAS        90K SNP        CAPS marker  
Received: 28 November 2022   Accepted: 16 March 2023
Fund: This work was supported by grants from the University Synergy Innovation Program of Anhui Province, China (GXXT-2021-058), the National Natural Science Foundation of China (Joint Fund Projects, U20A2033), the Natural Science Foundation of Anhui Province, China (2108085MC98), the Jiangsu Collaborative Innovation Center for Modern Crop Production, China (JCIC-MCP), the key scientific and technological breakthroughs of Anhui Province (2021d06050003), and the joint key project of improved wheat variety of Anhui Province, China (21803003).
About author:  YAN Sheng-nan, E-mail: 3104764960@qq.com; YU Zhao-yu, E-mail: 1053550020@qq.com; #Correspondence ZHANG Hai-ping, E-mail: zhhp20@163.com; CHANG Cheng, E-mail: changtgw@126.com * These authors contributed equally to this study.

Cite this article: 

YAN Sheng-nan, YU Zhao-yu, GAO Wei, WANG Xu-yang, CAO Jia-jia, LU Jie, MA Chuan-xi, CHANG Cheng, ZHANG Hai-ping. 2023. Dissecting the genetic basis of grain color and pre-harvest sprouting resistance in common wheat by association analysis. Journal of Integrative Agriculture, 22(9): 2617-2631.

Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C, Guerche C, Loaec M, Lainé M, Steinbach D, Choulet F, Rimbert H, Leroy P, Guilhot N, Salse J, Feuillet C, et al. 2018. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biology19, 111.

Albrecht T, Oberforster M, Kempf H, Ramgraber L, Schacht J, Kazman E, Zechner E, Neumayer A, Hartl L, Mohler V. 2015. Genome-wide association mapping of preharvest sprouting resistance in a diversity panel of European winter wheat. Journal of Applied Genetics56, 277–285.

Alemu A, Feyissa T, Tuberosa R, Maccaferri M, Sciara G, Letta T, Abeyo B. 2020. Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum). The Crop Journal8, 757–768.

Alexander D H, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research19, 1655–1664.

Ali A, Cao J J, Jiang H, Chang C, Zhang H P, Sheikh S W, Shah L, Ma C X. 2019. Unraveling molecular and genetic studies of wheat (Triticum aestivum L.) resistance against factors causing pre-harvest sprouting. Agronomy9, 117.

Andreoli C, Bassoi C M, Dionisio B. 2006. Genetic control of seed dormancy and pre-harvest sprouting in wheat. Scientia Agricola, 63, 564–566.

Ashikawa I, Abe F, Nakamura S. 2010. Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis. Plant Science179, 536–542.

Bates D M, Maechler M, Bolker B M, Walker S C. 2014. Package lme4: Linear mixed-effects models using eigen and s4. Journal of Statal Software67.

Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. Tassel: Software for association mapping of complex traits in diverse samples. Bioinformatics23, 2633–2635.

Cao J J, Shang Y Y, Xu D M, Xu K L, Cheng X R, Pan X, Liu X, Liu M L, Gao C, Yan S N, Yao H, Gao W, Lu J, Zhang H P, Chang C, Xia X C, Xiao S H, Ma C X. 2020. Identification and validation of new stable QTLS for grain weight and size by multiple mapping models in common wheat. Frontiers in Genetics11, 5845859.

Chang C, Feng J M, Si H Q, Yin B, Zhang H P, Ma C X. 2009. Validating a novel allele of viviparous-1 (Vp-1bf) associated with high seed dormancy of Chinese wheat landrace, Wanxianbaimaizi. Molecular Breeding25, 517–525.

Chen C X, Cai S B, Bai G H. 2008. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Molecular Breeding21, 351–358.

Chen G F, Zhang H, Deng Z Y, Wu R G, Li D M, Wang M Y, Tian J C. 2016. Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population. Euphytica212, 173–185.

Dong Z D, Chen J, Li T, Chen F, Cui D Q. 2015. Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschiiJournal of Genetics94, 453–459.

Ehrary A, Rosas M, Carpinelli S, Davalos O, Cowling C, Fernandez F, Escobar M. 2020. Glutaredoxin AtGRXS8 represses transcriptional and developmental responses to nitrate in Arabidopsis thaliana roots. Plant Direct4, e00227.

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology14, 2611–2620.

Flintham J E. 2000. Different genetic components control coat-imposed and embryo-imposed dormancy in wheat. Seed Science Research10, 43–50.

Gordon I L. 1979. Selection against sprouting damage in wheat. III.* Dormancy, germinative alpha-amylase, grain redness and flavanols. Australian Journal of Agricultural Research30, 387–402.

Groos C, Gay G, Perretant M R, Gervais L, Bernard M, Dedryver F, Charmet G. 2002. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross. Theoretical and Applied Genetics104, 39–47.

Himi E, Maekawa M, Miura H, Noda K. 2011. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theoretical and Applied Genetics122, 1561–1576.

Himi E, Mares D J, Yanagisawa A, Noda K. 2002. Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. Journal of Experimental Botany53, 1569.

Himi E, Noda K. 2005. Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica143, 239–242.

IWGSC (International Wheat Genome Sequencing Consortium). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science345, 1251788.

Kakeshpour T, Tamang T M, Motolai G, Fleming Z W, Park J E, Wu Q Y, Park S. 2021. CGFS-type glutaredoxin mutations reduce tolerance to multiple abiotic stresses in tomato. Physiologia Plantarum173, 1263–1279.

Kang H W, Cho Y G, Yoon U H, Eun M Y. 1998. A rapid DNA extraction method for RFLP and PCR analysis from a single dry seed. Plant Molecular Biology Reporter16, 90.

Kottearachchi N S, Uchino N, Kato K. H Miura. 2006. Increased grain dormancy in white-grained wheat by introgression of preharvest sprouting tolerance QTLs. Euphytica152, 421–428.

Kulwal P, Ishikawa G, Benscher D, Feng Z, Yu L X, Jadhav A, Mehetre S, Sorrells M E. 2012. Association mapping for pre-harvest sprouting resistance in white winter wheat. Theoretical and Applied Genetics125, 793–805.

Kumar A, Kumar J, Singh R, Garg T, Chhuneja P, Balyan H S, Gupta P K. 2009. QTL analysis for grain colour and pre-harvest sprouting in bread wheat. Plant Science177, 114–122.

Kumar A, Kumar K, Dubey A K, Ansari M A, Narayan S, Meenakshi, Kumar S, Pandey V, Pande V, Sanyal I. 2021. Chickpea glutaredoxin (CaGrx) gene mitigates drought and salinity stress by modulating the physiological performance and antioxidant defense mechanisms. Physiology Molecular Biology of Plants27, 1–22.

Lang J, Fu Y X, Zhou Y, Cheng M P, Deng M, Li M L, Zhu T T, Yang J, Guo X J, Gui L X, Li L C, Chen Z X, Yi Y J, Zhang L Q, Hao M, Huang L, Tan C, Chen G Y, Jiang Q T, Qi P F, et al. 2021. Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat. New Phytologist230, 1940–1952.

Li A L, Hao C Y, Wang Z Y, Geng S F, Jia M L, Wang F, Han X, Kong X C, Yin L J, Tao S, Deng Z Y, Liao R Y, Sun G L, Wang K, Ye X G, Jiao C Z, Lu H F, Zhou Y, Liu D C, Fu X D, et al. 2022. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant3, 504–519.

Li H H, Ye G Y, Wang J K. 2007. A modified algorithm for the improvement of composite interval mapping. Genetics175, 361–374.

Liao Y, Smyth G K, Shi W. 2014. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics30, 923–930.

Lin M, Zhang D D, Liu S B, Zhang G R, Yu J M, Fritz A K, Bai G H. 2016. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genomics17, 794.

Liu S B, Cai S B, Robert G, Chen C X, Bai G H. 2008. Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theoretical and Applied Genetics117, 691–699.

Liu S B, Sehgal S K, Li J R, Lin M, Trick H N, Yu J M, Gill B S, Bai G H. 2013. Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics195, 263–273.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Ma B J, Suo Y F, Zhang J, Xing N N, Gao Z Q, Lin X F, Zheng L L, Wang Y C. 2020. Glutaredoxin like protein (RTGRL1) regulates H2O2 and Naaccumulation by maintaining the glutathione pool during abiotic stress. Plant Physiology and Biochemistry159, 135–147.

Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. 2021. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant14, 1965–1968.

Maccaferri M, Harris N S, Twardziok S O, Pasam R K, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade V M, Milner S G, Himmelbach A, Mascher M, Bagnaresi P, Faccioli P, Cozzi P, Lauria M, Lazzari B, Stella A, Manconi A, Gnocchi M, et al. 2019. Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics51, 885–895.

Mackay I, Powell W. 2007. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science12, 57–63.

Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y. 2005. A QTL located on chromosome 4a associated with dormancy in white- and red-grained wheats of diverse origin. Theoretical and Applied Genetics111, 1357–1364.

Mares D J. 1993. Pre-harvest sprouting in wheat. I. Influence of cultivar, rainfall and temperature during grain ripening. Australian Journal Agricultural Research44, 1259–1272.

Martins L, Knuesting J, Bariat L, Dard A, Freibert S A, Marchand C H, Young D, Dung N H T, Voth W, Debures A, Saez-Vasquez J, Lemaire S D, Lill R, Messens J, Scheibe R, Reichheld J, Riondet C. 2020. Redox modification of the iron-sulfur glutaredoxin GRXS17 activates holdase activity and protects plants from heat stress. Plant Physiology184, 676–692.

Martinez S A, Godoy J, Huang M, Zhang Z W, Carter A H, Campbell K A G, Steber C M. 2018. Genome-wide association mapping for tolerance to preharvest sprouting and low falling numbers in wheat. Frontiers in Plant Science9, 141–157.

Merk H L. 2019. Estimating heritability and BLUPs for traits using tomato phenotypic data. [2019-11-14]. https://plant-breeding-genomics.extension.org/author/plant-breeding-genomics/

Miyamoto T, Everson E H. 1958. Biochemical and physiological studies of wheat seed pigmentation. Agronomy Journal50, 733–734.

Moseler A, Kruse I, Maclean A E, Pedroletti L, Franceschetti M, Wagner S, Wehler R, Fischer-Schrader K, Poschet G, Wirtz M, Dormann P, Hildebrandt T M, Hell R, Schwarzlander M, Balk J, Meyer A J. 2021. The function of glutaredoxin GRXS15 is required for lipoyl-dependent dehydrogenases in mitochondria. Plant Physiology186, 1507–1525.

Munkvold J D, Tanaka J, Benscher D, Sorrells M E. 2009. Mapping quantitative trait loci for pre-harvest sprouting resistance in white wheat. Theoretical and Applied Genetics119, 1223–1235.

Muhammad S, Sajjad M, Khan S H, Shahid M , Zubair M, Awan F S, Khan A L, Mubarak M S, Tahir A, Umer M, Keyani R, Afzal M L, Manzoor L, Wattoo J L, Rehman A U. 2020. Genome-wide association analysis for stripe rust resistance in spring wheat (Triticum aestivum L.) germplasm. Journal of Integrative Agriculture19, 2035–2043.

Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H. 2011. A wheat homolog of mother of FT and TFL1 acts in the regulation of germination. The Plant Cell23, 3215–3229.

Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H. 2003. Mapping QTLs for seed dormancy and Vp1 homologue on chromosome 3A of wheat. Theoretical and Applied Genetics106, 1491–1496.

Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. 2016. Transcript-level expression analysis of RNA-Seq experiments with hisat, stringtie and ballgown. Nature Protocols11, 1650–1667.

Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics38, 904–909.

Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics155, 9197–920.

Rabieyan E, Bihamta M R, Moghaddam M E, Mohammadi V, Alipour H. 2022. Genome-wide association mapping and genomic prediction for preharvest sprouting resistance, low α-amylase and seed color in Iranian bread wheat. BMC Plant Biology22, 300.

Reddy L V, Metzger R J, Ching T M. 1985. Effect of temperature on seed dormancy of wheat. Crop Science25, 455–458.

Simsek S, Ohm J B, Lu H, Rugg M, Berzonsky W, Alamri M S, Mergoum M. 2014. Effect of pre-harvest sprouting on physicochemical properties of starch in wheat. Foods (Basel, Switzerland), 3, 194–207.

Tai L, Wang H J, Xu X J, Sun W H, Ju L, Liu W T, Li W Q, Sun J Q, Chen K M. 2021. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. Journal of Experimental Botany72, 2857–2876.

Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J Z, Matsumoto T, Kawaura K, Ogihara Y. 2016. A causal gene for seed dormancy on wheat chromosome 4A encodes a map kinase kinase. Current Biology26, 782–787.

Trethowan R M. 1995. Evaluation and selection of bread wheat (Triticum aestivum L.) for preharvest sprouting tolerance. Australian Journal of Agricultural Research46, 463–474.

Verma P K, Verma S, Tripathi R D, Chakrabarty D. 2020. A rice glutaredoxin regulate the expression of aquaporin genes and modulate root responses to provide arsenic tolerance. Ecotoxicology and Environmental Safety195, 110471.

Vetch J M, Stougaard R N, Martin J M, Giroux M J. 2019. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.). Plant Science281, 180–185.

Walker-Simmons M. 1988. Enhancement of ABA responsiveness in wheat embryos by high temperature. Plant Cell Environment11, 769–775.

Wang D, Dowell F E, Lacey R E. 1999. Predicting the number of dominant R alleles in single wheat kernels using visible and near-infrared reflectance spectra. Cereal Chemistry76, 6–8.

Wang Q, Yan N, Chen H, Li S R, Hu H Y, Lin Y, Shi H R, Zhou K Y, Jiang X J, Yu S F, Li C X, Chen G D, Yang Z S, Liu Y X. 2021. Genome-wide association study of kernel traits in Aegilops tauschiiFrontiers in Genetics12, 651785.

Wang S C, Wong D, Forrest K, Allen A M, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnology Journal12, 787–796.

Wang S X, Zhu Y L, Zhang D X, Shao H, Liu P, Hu J B, Zhang H, Zhang H P, Chang C, Lu J, Xia X C, Sun G L, Ma C X. 2017. Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS ONE12, e0188662.

Warner R L, Kudrna D A, Spaeth S C, Jones S S. 2000. Dormancy in white-grain mutants of Chinese spring wheat (Triticum aestivum L.). Seed Science Research10, 51–60.

Wei J, Cao H, Liu J D, Zuo J H, Fang Y, Lin C T, Sun R Z, Li W L, Liu Y X. 2018. Insights into transcriptional characteristics and homoeolog expression bias of embryo and de-embryonated kernels in developing grain through RNA-seq and Iso-seq. Function and Integrative Genomics19, 1–14.

Wei W X, Min X Y, Shan S Y, Jiang H, Cao J J, Li L, Wang J F, Wang S X, Zhu Y L, Lu J, Si H Q, Xia X C, Ma C X, Zhang H P, Chang C. 2019. Isolation and characterization of TaQsd1 genes for period of dormancy in common wheat (Triticum aestivum L.). Molecular Breeding39, 150.

Xiao S H, Zhang X Y, Yan C S, Lin H. 2002. Germplasm improvement for preharvest sprouting resistance in Chinese white-grained wheat: An overview of the current strategy. Euphytica126, 35–38.

Xu F, Tang J Y, Gao S P, Cheng X, Du L, Chu C C. 2019. Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. The Plant Journal100, 1036–1051.

Yang Y, Zhao X L, Xia L Q, Chen X M, Xia X C, Yu Z, He Z H. 2007. Development and validation of a viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theoretical and Applied Genetics115, 971–980.

Yin L L, Zhang H H, Tang Z S, Xu J Y, Yin D, Zhang Z W, Yuan X H, Zhu M J, Zhao S H, Li X Y, Liu X L. 2020. Rmvp: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics Proteomics Bioinformatics19, 10.

Zhang Y J, Miao X L, Xia X C, He Z H. 2014. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theoretical and Applied Genetics127, 855–866.

Zhang Y J, Xia X C, He Z H. 2017. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theoretical and Applied Genetics130, 1–9.

Zhou J Q, Guo Y Q, Gao Y F, Li J S, Yan J B. 2011. A SSR linkage map of maize×Teosinte F2 population and analysis of segregation distortion. Agricultural Sciences in China10, 166–174.

Zhou S H, Fu L, Wu Q H, Chen J J, Chen Y X, Xie J Z, Wang Z Z, Wang G X, Zhang D Y, Liang Y, Zhang Y, You M S, Liang R Q, Han J, Liu Z Y. 2017. QTL mapping revealed TAVP-1A conferred pre-harvest sprouting resistance in wheat population Yanda 1817×Beinong 6. Journal of Integrative Agriculture16, 435–444.

Zhou Y, Tang H, Cheng M P, Dankwa K O, Chen Z X, Li Z Y, Gao S, Liu Y X, Jiang Q T, Lan X J, Pu Z E, Wei Y M, Zheng Y L, Hickey L T, Wang J R. 2017. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces. Frontiers in Plant Science8, 401–414.

Zhou Y, Diao M, Cui J X, Chen X J, Wen Z L, Zhang J W, Liu H Y. 2018. Exogenous GSH protects tomatoes against salt stress by modulating photosystem II efficiency, absorbed light allocation and H2O2-scavenging system in chloroplasts. Journal of Integrative Agriculture17, 2257–2272.

Zhu Y L, Wang S X, Wei W X, Xie H Y, Liu K, Zhang C, Wu Z Y, Jiang H, Cao J J, Zhao L X, Lu J, Zhang H P, Chang C, Xia X C, Xiao S H, Ma C X. 2019. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics132, 2947–2963.

Zhu Y L, Wang S X, Zhang H P, Zhao L X, Wu Z Y, Jiang H, Cao J J, Liu K, Qin M, Lu J, Sun G L, Xia X C, Chang C, Ma C X. 2016. Identification of major loci for seed dormancy at different post-ripening stages after harvest and validation of a novel locus on chromosome 2AL in common wheat. Molecular Breeding36, 174.

Zhu Y L, Wang S X, Zhao L X, Zhang D X, Hu J B, Cao X L, Yang Y J, Chang C, Ma C X, Zhang H P. 2014. Exploring molecular markers of preharvest sprouting resistance gene using wheat intact spikes by association analysis. Acta Agronomica Sinica40, 1725. (in Chinese)

Zuo J H, Lin C T, Cao H, Chen F Y, Liu Y X, Liu J D. 2019. Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.). Planta250, 187–198.

[1] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[2] SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3394-3407.
[3] SUN Yan, LI Yu-hua, ZHAO Chang-heng, TENG Jun, WANG Yong-hui , WANG Tian-qi, SHI Xiao-yuan, LIU Zi-wen, LI Hai-jing, WANG Ji-jing, WANG Wen-wen, NING Chao, WANG Chang-fa, ZHANG Qin. Genome-wide association study for numbers of vertebrae in Dezhou donkey population reveals new candidate genes[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3159-3169.
No Suggested Reading articles found!