Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (10): 2934-2948    DOI: 10.1016/j.jia.2023.02.001
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Rapid identification of Psathyrostachys huashanica Keng chromosomes in wheat background based on ND-FISH and SNP array methods

LI Jia-chuang1, 2*, LI Jiao-jiao1*, ZHAO Li3, ZHAO Ji-xin3, WU Jun3, CHEN Xin-hong3, ZHANG Li-yu1, DONG Pu-hui1, WANG Li-ming1, ZHAO De-hui1, 2, WANG Chun-ping1, 2#, PANG Yu-hui1, 2#

1 College of Agronomy, Henan University of Science and Technology, Luoyang 471023, P.R.China
2 The Shennong Laboratory, Henan Provience, Zhengzhou 450002, P.R.China
3 College of Agronomy, Northwest A&F University, Yangling 712100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

华山新麦草(2n=2x=14, NsNs)因具有诸多优异的农艺性状被认为是对普通小麦品种改良而言具有重要价值的野生近缘种。然而,尽管多个小麦-华山新麦草衍生后代的创制为优异性状的转移提供了种质资源基础,但小麦背景中华山新麦草染色体鉴定方法的滞后限制了对这些衍生后代的研究。本研究开发了三条高效非变性荧光原位杂交(ND-FISH)探针其中HS-TZ3HS-TZ4能特异性地结合华山新麦草染色体端粒区域,HS-TZ5可以和染色体着丝粒区域结合。华山新麦草染色体的FISH核型图和模式图被分别构建,以便于区分衍生系中所导入华山新麦草染色体的同源群归属。具体而言,染色体1Ns2Ns在短臂和长臂上有相反的荧光信号,3Ns4Ns7Ns有叠加的双色荧光信号,5Ns6Ns仅在短臂有荧光信号,7Ns在长臂的中间区域也有荧光信号。此外,评估了在不同组合方式下利用低密度单核苷酸多态性(SNP)芯片鉴定外源导入系的效果。结果表明最佳的模式是统计分析每条染色体上SNP位点的纯合率,15K SNP芯片可以广泛应用于附加系代换系和易位系的鉴定,而40K SNP芯片在小麦和外源染色体易位区段的鉴定中最准确。本研究提供了基于ND-FISHSNP芯片识别小麦背景中华山新麦草染色体同源群归属的简便方法,对于小麦-华山新麦草衍生系的高效鉴别和Ns染色体的进一步利用具有重要意义。



Abstract  

Psathyrostachys huashanica Keng (2n=2x=14, NsNs) is regarded as a valuable wild relative species for common wheat cultivar improvement because of its abundant beneficial agronomic traits.  However, although the development of many wheat–Phuashanica-derived lines provides a germplasm base for the transfer of excellent traits, the lag in the identification of Phuashanica chromosomes in the wheat background has limited the study of these lines.  In this study, three novel nondenaturing fluorescence in situ hybridization (ND-FISH)-positive oligo probes were developed.  Among them, HS-TZ3 and HS-TZ4 could specifically hybridize with Phuashanica chromosomes, mainly in the telomere area, and HS-CHTZ5 could hybridize with the chromosomal centromere area.  We sequentially constructed a Phuashanica FISH karyotype and idiogram that helped identify the homologous groups of introduced Phuashanica chromosomes.  In detail, 1Ns and 2Ns had opposite signals on the short and long arms, 3Ns, 4Ns, and 7Ns had superposed two-color signals, 5Ns and 6Ns had fluorescent signals only on their short arms, and 7Ns had signals on the intercalary of the long arm.  In addition, we evaluated different ways to identify alien introgression lines by using low-density single nucleotide polymorphism (SNP) arrays and recommended the SNP homozygosity rate in each chromosome as a statistical pattern.  The 15K SNP array is widely applicable for addition, substitution, and translocation lines, and the 40K SNP array is the most accurate for recognizing transposed intervals between wheat and alien chromosomes.  Our research provided convenient methods to distinguish the homologous group of Phuashanica chromosomes in a common wheat background based on ND-FISH and SNP arrays, which is of great significance for efficiently identifying wheat–Phuashanica-derived lines and the further application of Ns chromosomes

Keywords:  Psathyrostachys huashanica        Ns chromosomes       ND-FISH       SNP array       common wheat  
Received: 19 September 2022   Accepted: 14 November 2022
Fund: 

This study was supported by the National Natural Science Foundation of China (31501301), the National Key Research and Development Plan for the “Thirteenth Five-Year Plan” (2018YFD0100904), the Natural Science Foundation of Henan Province, China (162300410077), and the International Cooperation Project of Henan Province, China (172102410052). 

About author:  LI jia-chuang, E-mail: lijiachuang0208@126.com; LI Jiao-jiao, E-mail: 1439491104@qq.com; #Correspondence PANG Yu-hui, E-mail: pangyuhui@aliyun.com; WANG Chun-ping, E-mail: chunpingw@haust.edu.cn * These authors contributed equally to this study.

Cite this article: 

LI Jia-chuang, LI Jiao-jiao, ZHAO Li, ZHAO Ji-xin, WU Jun, CHEN Xin-hong, ZHANG Li-yu, DONG Pu-hui, WANG Li-ming, ZHAO De-hui, WANG Chun-ping, PANG Yu-hui. 2023. Rapid identification of Psathyrostachys huashanica Keng chromosomes in wheat background based on ND-FISH and SNP array methods. Journal of Integrative Agriculture, 22(10): 2934-2948.

Allen A M, Barker G L A, Wilkinson P, Burridge A, Winfield M, Coghill J, Uauy C, Griffiths S, Jack P, Berry S, Werner P, Melichar J P E, McDougall J, Gwilliam R, Robinson P, Edwards K J. 2013. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnology Journal11, 279–295.

Aragón-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G. 1996. A cereal centromeric sequence. Chromosoma105, 261–268.

Baden C. 1991. A taxonomic revision of Psathyrostachys (Poaceae). Nordic Journal of Botany11, 3–26.

Bai S S, Yuan F P, Zhang H B, Zhang Z Y, Zhao J X, Yang Q H, Wu J, Chen X H. 2020. Characterization of the wheat–Psathyrostachys huashania Keng 2Ns/2D substitution line H139: A novel germplasm with enhanced resistance to wheat take-all. Frontiers in Plant Science11, 233.

Charlesworth B, Sniegowski P, Stephan W. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature371, 215–220.

Chen H Q, Li S J, Liu Y W, Liu J X, Ma X L, Du L P, Wang K, Ye X G. 2021. Effects of 1Dy12 subunit silencing on seed storage protein accumulation and flour-processing quality in a common wheat somatic variation line. Food Chemistry335, 127663.

Chen S Y. 1991. The hybridization between Triticum aestivum and Psathyrostachys huashanicaActa Genetica Sinica18, 508–512. (in Chinese)

Cheng M H, Karafiátová M, Sun H J, HoluŠová K, Dolezel J, Song X, Wang H, Wang X E. 2022. Development of oligonucleotide probes specific to Roegneria ciliaris chromosomes based on satellite repeats Journal of Nanjing Agricultural University45, 442–452. (in Chinese)

Divashuk M G, Khuat T M L, Kroupin P Y, Kirov I V, Romanov D V, Kiseleva A V, Khrustaleva L I, Alexeev D G, Zelenin A S, Klimushina M V, Razumova O V, Karlov G I. 2016. Variation in copy number of Ty3/Gypsy centromeric retrotransposons in the genomes of Thinopyrum intermedium and its diploid progenitors. PLoS ONE11, e0154241.

Du H, Tang Z, Duan Q, Tang S, Fu S. 2018. Using the 6RLKu minichromosome of rye (Secale cereale L.) to create wheat–rye 6D/6RLKu small segment translocation lines with powdery mildew resistance. International Journal of Molecular Sciences19, 3933.

Du W L, Wang J, Lu M, Sun S G, Chen X H, Zhao J X, Yang Q H, Wu J. 2014a. Characterization of a wheat–Psathyrostachys huashanica Keng 4Ns disomic addition line for enhanced tiller numbers and stripe rust resistance. Planta239, 97–105.

Du W L, Wang J, Pang Y H, Li Y L, Chen X H, Zhao J, Yang Q H, Wu J. 2013. Isolation and characterization of a Psathyrostachys huashanica Keng 6Ns chromosome addition in common wheat. PLoS ONE8, e53921.

Du W L, Wang J, Pang Y H, Wu J, Zhao J X, Liu S H, Yang Q H, Chen X H. 2014b. Development and application of PCR markers specific to the 1Ns chromosome of Psathyrostachys huashanica Keng with leaf rust resistance. Euphytica200, 207–220.

Du W L, Wang J, Wang L M, Wu J, Zhao J X, Liu S H, Yang Q H, Chen X H. 2014c. Molecular characterization of a wheat–Psathyrostachys huashanica Keng 2Ns disomic addition line with resistance to stripe rust. Molecular Genetics and Genomics289, 735–743.

Du W L, Wang J, Wang L M, Zhang J, Chen X H, Zhao J X, Yang Q H, Wu J. 2012. Development and characterization of a Psathyrostachys huashanica Keng 7Ns chromosome addition line with leaf rust resistance. PLoS ONE8, e70879.

Fu S L, Chen L, Wang Y Y, Li M, Yang Z J, Qiu L, Yan B J, Ren Z L, Tang Z X. 2015. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Scientific Reports5, 10552.

Glagoleva A Y, Ivanisenko N V, Khlestkina E K. 2019. Organization and evolution of the chalcone synthase gene family in bread wheat and relative species. BMC Genetics20, 30.

Guo X, Su H D, Shi Q H, Fu S L, Wang J, Zhang X Q, Hu Z M, Han F P. 2016. De novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genetics12, e1005997.

Guo Z F, Yang Q N, Huang F F, Zheng H J, Sang Z Q, Xu Y F, Zhang C, Wu K S, Tao J J, Prasanna B M, Olsen M S, Wang Y B, Zhang J N, Xu Y B. 2021. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Communications2, 100230.

Han J, Liu Y X, Hou C C, Li J C, Wang J L, Zhang Q Y, Yang Q H, Chen X H, Wu J. 2020. A 1Ns disomic addition from Psathyrostachys Huashanica Keng confers resistance to powdery mildew in wheat. Agronomy-Basel10, 312.

Hegde S G, Waines J G. 2004. Hybridization and introgression between bread wheat and wild and weedy relatives in North America. Crop Science44, 1145–1155.

Hu D, Kang L, Liu Y, Ma J, Tang X, Zeng J, Yang Z, Chen G. 2018. A simple and effective ND-FISH probe design for identifying barley (Hordeum vulgare) chromosomes. Genetic Resources and Crop Evolution65, 2189–2198.

Hudakova S, Michalek W, Presting G G, Hoopen R T, Santos K D, Jasencakova Z, Schubert I. 2001. Sequence organization of barley centromeres. Nucleic Acids Research29, 5029–5035.

Jiang J, Gill B S. 1998. Preferential male transmission of an alien chromosome in wheat. Journal of Heredity89, 87–89.

Kamaluddin, Khan M A, Kiran U, Ali A, Abdin M Z, Zargar M Y, Ahmad S, Sofi P A, Gulzar S. 2017. Molecular markers and marker-assisted selection in crop plants. In: Abdin M Z, Kiran U, Kamaluddin, Ali A, eds., Plant BiotechnologyPrinciples and Applications. Springer Singapore, Singapore. pp. 295–328.

Kang H Y, Wang Y, Fedak G, Cao W G, Zhang H Q, Fan X, Sha L N, Xu L L, Zheng Y L, Zhou Y H. 2011. Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust. PLoS ONE6, e21802.

Kang H Y, Zhang Z J, Xu L L, Qi W L, Tang Y, Wang H, Zhu W, Li D Y, Zeng J, Wang Y. 2016. Characterization of wheat–Psathyrostachys huashanica small segment translocation line with enhanced kernels per spike and stripe rust resistance. Genome59, 221–229.

Kishii M, Dou Q, Garg M, Ito M, Tanaka H, Tsujimoto H. 2010. Production of wheat–Psathyrostachys huashanica chromosome addition lines. Genes & Genetic Systems85, 281–286.

Lei J, Zhou J, Sun H, Wan W, Xiao J, Yuan C, Karafiátová M, Doležel J, Wang H, Wang X. 2020. Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. The Crop Journal8, 676–681.

Li G R, Zhang T, Yu Z H, Wang H J, Yang E N, Yang Z J. 2021. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in TriticeaeThe Plant Journal105, 978–993.

Li J C, Li J J, Cheng X N, Zhao L, Yang Z J, Wu J, Yang Q H, Chen X H, Zhao J X. 2021. Molecular cytogenetic and agronomic characterization of the similarities and differences between wheat–Leymus mollis Trin. and wheat–Psathyrostachys huashanica Keng 3Ns (3D) substitution lines. Frontiers in Plant Science12, 423.

Li J C, Yao X N, Yang Z J, Cheng X N, Yuan F P, Liu Y, Wu J, Yang Q H, Zhao J X, Chen X H. 2019. Molecular cytogenetic characterization of a novel wheat–Psathyrostachys huashanica Keng 5Ns (5D) disomic substitution line with stripe rust resistance. Molecular Breeding39, 109.

Li J C, Zhao L, Cheng X N, Bai G H, Li M, Wu J, Yang Q H, Chen X H, Yang Z J, Zhao J X. 2020. Molecular cytogenetic characterization of a novel wheat–Psathyrostachys huashanica Keng T3DS–5NsL·5NsS and T5DL–3DS·3DL dual translocation line with powdery mildew resistance. BMC Plant Biology20, 163.

Li J J, Zhao L, LÜ B Y, Fu Y, Zhang S F, Liu S H, Yang Q H, Wu J, Li J C, Chen X H. 2023. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance. Journal of Integrative Agriculture, 22, 1291–1307.

Liu D C, Zhang H G, Zhang L Q, Yuan Z W, Hao M, Zheng Y L. 2014. Distant hybridization: A tool for interspecific manipulation of chromosomes. In: Pratap A, Kumar J, eds., Alien Gene Transfer in Crop PlantsVolume 1InnovationsMethods and Risk Assessment. Springer New York, New York, NY. pp. 25–42.

Liu L Q, Luo Q L, Li H W, Li B, Li Z S, Zheng Q. 2018. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theoretical and Applied Genetics131, 2359–2370.

Liu X, Chen L, Zhang M, Li H, Jiang X, Zhang J, Jia Z, Ma P, Hao M, Jiang B, Huang L, Ning S, Yuan Z, Chen X, Chen X, Liu D, Zhang L. 2022. Cytogenetic characterization and molecular marker development for a wheat–Tboeoticum 4Ab (4B) disomic substitution line with stripe rust resistance. Plant Disease107, 125–130.

Liu Y X, Huang S H, Han J, Hou C C, Zheng D S, Zhang Z M, Wu J. 2021. Development and molecular cytogenetic identification of a new wheat–Psathyrostachys huashanica Keng translocation line resistant to powdery mildew. Frontiers in Plant Science12, 1127.

Liu Z, Yue W, Li D, Wang R R C, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X. 2008. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma117, 445–456.

Mancia F H, Sohn S H, Ahn Y K, Kim D S, Kim J S, Kwon Y S, Kim C W, Lee T H, Hwang Y J. 2015. Distribution of various types of repetitive DNAs in Allium cepa L. based on dual color FISH. HorticultureEnvironmentand Biotechnology56, 793–799.

Molnár-Láng M, Ceoloni C, Doležel J. 2016. Alien introgression in wheat cytogenetics, molecular biology, and genomics. In: Cereal Research Communications. Akademiai Kiado, Springer, Berlin. p. 535.

Mukai Y, Gill B S. 1991. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome34, 448–452.

Mukai Y, Nakahara Y, Yamamoto M. 1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome36, 489–494.

Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J. 2017. TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research45, e111.

Ørgaard M, Heslop-Harrison J S. 1994. Relationships between species of LeymusPsathyrostachys, and Hordeum (PoaceaeTriticeae) inferred from Southern hybridization of genomic and cloned DNA probes. Plant Systematics and Evolution189, 217–231.

Rasheed A, Mujeeb-Kazi A, Ogbonnaya F C, He Z, Rajaram S. 2018. Wheat genetic resources in the post-genomics era: Promise and challenges. Annals of Botany121, 603–616.

Ren P X, Zhao D H, Zeng Z K, Yan X F, Zhao Y, Lan C X, Wang C P. 2022. Pleiotropic effect analysis and marker development for grain zinc and iron concentrations in spring wheat. Molecular Breeding42, 49.

Said M, Hřibová E, Danilova T V, Karafiátová M, Čížková J, Friebe B, Doležel J, Gill B S, Vrána J. 2018. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theoretical and Applied Genetics131, 2213–2227.

Shin T, Kazuyoshi T. 2001. Production and characterization of a complete set of wheat–wild barley (Hordeum vulgare ssp. spontaneum) chromosome addition lines. Breeding Science51, 199–206.

Singh K, Chhuneja P, Gupta O P, Jindal S, Yadav B. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science361, 1–13.

Smith E L, Mac Key J, Qualset C. 1986. Conventional methods of wheat breeding. In: Genetic Improvement in Yield of Wheat. Crop Science Society of America and American Society of Agronomy, America.

Song S, Tao Y, Zhang H, Wu Y. 2013. Psathyrostachys huashanica, a potential resource for resistance to Barley yellow dwarf virus-GAV. European Journal of Plant Pathology137, 217–221.

Su J N, Guo J, Wang C J, Jing F, Zhao J X, Yang Q H, Chen X H, Jun W. 2015. Specific SCAR markers on chromosome 3Ns of Psathyrostachys huashanica Keng. Journal of Triticeae Crops35, 1–6. (in Chinese)

Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. 2020. The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal18, 1354–1360.

Tan B W, Zhao L, Li L Y, Zhang H, Zhu W, Xu L L, Wang Y, Zeng J, Fan X, Sha L N, Wu D D, Cheng Y R, Zhang H Q, Chen G Y, Zhou Y H, Kang H Y. 2021. Identification of a wheat–Psathyrostachys huashanica 7Ns ditelosomic addition line conferring early maturation by cytological analysis and newly developed molecular and FISH markers. Frontiers in Plant Science12, 784001.

Tang S Y, Tang Z X, Qiu L, Yang Z J, Li G R, Lang T, Zhu W Q, Zhang J H, Fu S L. 2018. Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH. Frontiers in Plant Science9, 1104.

Tang Z X, Yang Z J, Fu S L. 2014. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa–535, pTa71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics55, 313–318.

Trifonov V A, Vorobieva N N, Rens W. 2009. FISH with and without COT1 DNA. In: Liehr T, ed., Fluorescence in situ Hybridization (FISH) - Application Guide. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 99–109.

Uslu E, Reader S, Miller T. 1999. Characterization of Dasypyrum villosum (L.) candargy chromosomes by fluorescent in situ hybridization. Hereditas131, 129–134.

Wang F Q, Fan X C, Zhang Y, Sun L, Liu C H, Jiang J F. 2022. Establishment and application of an SNP molecular identification system for grape cultivars. Journal of Integrative Agriculture21, 1044–1057.

Wang H W, Sun S L, Ge W Y, Zhao L F, Kong L R. 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science368, eaba5435.

Wang J, Liu Y L, Su H D, Guo X R, Han F P. 2017. Centromere structure and function analysis in wheat–rye translocation lines. The Plant Journal91, 199–207.

Wang R R C, Zhang J Y, Lee B S, Jensen K B, Kishii M, Tsujimoto H. 2006. Variations in abundance of 2 repetitive sequences in Leymus and Psathyrostachys species. Genome49, 511–519.

Wang Y Z, Cao Q, Zhang J J, Wang S W, Chen C H, Wang C Y, Zhang H, Wang Y J, Ji W Q. 2020. Cytogenetic analysis and molecular marker development for a new wheat–Thinopyrum ponticum 1Js (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Frontiers in Plant Science11, 1282.

Xi W, Tang S Y, Du H M, Luo J, Tang Z X, Fu S L. 2020. ND-FISH-positive oligonucleotide probes for detecting specific segments of rye (Secale cereale L.) chromosomes and new tandem repeats in rye. The Crop Journal8, 171–181.

Xiao Z Q, Tang S Y, Qiu L, Tang Z X, Fu S L. 2017. Oligonucleotides and ND-FISH displaying different arrangements of tandem repeats and identification of Dasypyrum villosum chromosomes in wheat backgrounds. Molecules22, 973.

Xu S R, Jiang B, Han H M, Ji X J, Zhang J P, Zhou S H, Yang X M, Li X Q, Li L H, Liu W H. 2023. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in a wheat background. Journal of Integrative Agriculture22, 52–62.

Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. 2020. Genotyping by target sequencing (GBTS) and its applications. Scientia Agricultura Sinica53, 2983–3004. (in Chinese)

Yu F, Lei Y, Li Y, Dou Q, Wang H, Chen Z. 2013. Cloning and characterization of chromosomal markers in Alfalfa (Medicago sativa L.). Theoretical and Applied Genetics126, 1885–1896.

Zakrzewski F, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T. 2010. Analysis of a cot-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgarisBMC Plant Biology10, 8.

Zhang H, Wang F, Zeng C Y, Zhu W, Xu L L, Wang Y, Zeng J, Fan X, Sha L N, Wu D D, Cheng Y R, Zhang H Q, Chen G Y, Zhou Y H, Kang H Y. 2022. Development and application of specific FISH probes for karyotyping Psathyrostachys huashanica chromosomes. BMC Genomics23, 1–14.

Zhang W, Zhang R Q, Feng Y G, Bie T D, Chen P. 2013. Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. Chinese Science Bulletin58, 890–897.

Zhao J X, Ji W Q, Wu J, Chen X H, Cheng X N, Wang J W, Pang Y H, Liu S H, Yang Q H. 2010. Development and identification of a wheat–Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. Genetic Resources and Crop Evolution57, 387–394.

Zhao L B, Xie D, Huang L, Zhang S J, Luo J T, Jiang B, Ning S Z, Zhang L Q, Yuan Z W, Wang J R, Zheng Y L, Liu D C, Hao M. 2021. Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements. Journal of Integrative Agriculture20, 2333–2342.

Zhou S H, Zhang J P, Che Y H, Liu W H, Lu Y Q, Yang X M, Li X Q, Jia J Z, Liu X, Li L H. 2018. Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnology Journal16, 818–827.

[1] YAN Sheng-nan, YU Zhao-yu, GAO Wei, WANG Xu-yang, CAO Jia-jia, LU Jie, MA Chuan-xi, CHANG Cheng, ZHANG Hai-ping. Dissecting the genetic basis of grain color and pre-harvest sprouting resistance in common wheat by association analysis[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2617-2631.
[2] LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1291-1307.
[3] JIANG Yun, WANG De-li, HAO Ming, ZHANG Jie, LIU Deng-cai.

Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters [J]. >Journal of Integrative Agriculture, 2023, 22(4): 999-1008.

[4] LIU Yun-chuan, WANG Xiao-lu, HAO Chen-yang, IRSHAD Ahsan, LI Tian, LIU Hong-xia, HOU Jian, ZHANG Xue-yong. TaABI19 positively regulates grain development in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(1): 41-51.
[5] YANG Meng-jiao, WANG Cai-rong, Muhammad Adeel HASSAN, WU Yu-ying, XIA Xian-chun, SHI Shu-bing, XIAO Yong-gui, HE Zhong-hu. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1180-1192.
[6] WU Tian-ci, ZHU Xiu-liang, LÜ Liang-jie, CHEN Xi-yong, XU Gang-biao, ZHANG Zeng-yan. The wheat receptor-like cytoplasmic kinase TaRLCK1B is required for host immune response to the necrotrophic pathogen Rhizoctonia cerealis[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2616-2627.
[7] CHEN Hong-xin, HAN Hai-ming, LI Qing-feng, ZHANG Jin-peng, LU Yu-qing, YANG Xin-ming, LI Xiuquan, LIU Wei-hua, LI Li-hui. Identification and genetic analysis of multiple P chromosomes of Agropyron cristatum in the background of common wheat[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1697-1705.
[8] SUN Hao-jie, SONG Jing-jing, XIAO Jin, XU Tao, WEI Xing, YUAN Chun-xia, CAO Ai-zhong, XING Liping, WANG Hai-yan, WANG Xiu-e. Development of EST-PCR markers specific to the long arm of chromosome 6V of Dasypyrum villosum[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1720-1726.
No Suggested Reading articles found!