Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 72-84    DOI: 10.1016/j.jia.2023.10.004
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Development and molecular cytogenetic identification of a new wheat–rye 6RL ditelosomic addition and 1R (1B) substitution line with powdery mildew resistance

Guohao Han1, Jing Wang1, Hanwen Yan1, Lijun Cao1, Shiyu Liu1, Xiuquan Li2, Yilin Zhou3, Wei Liu3, Tiantian Gu1, Zhipeng Shi1, Hong Liu1, Lihui Li2#, Diaoguo An1, 4#

1 Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China

2 National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 State Key Laboratory for Biology of Plant Disease and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

4 Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China

 Highlights 
Wheat–rye line YT5 exhibits powdery mildew resistance derived from rye chromosome arm 6RL.
Cytogenetic analysis confirms YT5 as a 6RL ditelosomic addition and 1R (1B) substitution line.
Validated 6RL-specific KASP markers facilitate efficient MAS in wheat backgrounds.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦白粉病严重威胁小麦的安全生产,利用抗病基因被认为是控制该病害最合适的措施。然而,品种间的相互杂交导致了当前主栽品种遗传背景的高度同质化。八倍体小黑麦是由小麦和黑麦人工合成的新物种,是小麦抗性改良的重要基因供体。本研究通过将八倍体小黑麦与普通小麦杂交,创制了抗白粉病小麦-黑麦后代YT5。通过基因组原位杂交、多色荧光原位杂交、多色基因组原位杂交和分子标记分析,证明YT56RL双端体附加与1R(1B)异代换系。白粉病遗传分析表明YT5的白粉病抗性来源于其黑麦6RL染色体。苗期利用不同白粉病菌株接种YT5, 发现YT5的叶片出现明显孢子,随后产生坏死反应,到成株期时植株表现为高抗,与黑麦染色体6RL上已报道的Pm基因表型不同。同时,YT5农艺性状较好,可作为优良桥梁材料应用于小麦遗传改良。为促进YT56RL上白粉病抗性的转移,选择并验证了两个黑麦6RL特异KASP标记,它们能够在不同小麦背景下检测该染色体臂,有效服务于分子标记辅助选择育种。



Abstract  
Powdery mildew is a serious disease caused by Blumeria graminis f. sp. tritici (Bgt) that critically threatens the yield and quality of wheat (Triticum aestivum L.).  Using effective powdery mildew resistance genes is the optimal method for controlling this disease.  Against the background of high genetic homogeneity among the modern commercial cultivars that are mainly derived from conventional interbreeding, the resistance genes from wheat relatives have especially prominent advantages.  Octoploid triticale, produced from common wheat and rye (Secale cereale L.) through distant hybridization, is a new synthetic species and valuable gene donor for wheat improvement.  In this study, we developed the wheat–rye line YT5 through the hybridization of octaploid triticale and two wheat lines.  YT5 was confirmed to be a 6RL ditelosomic addition and 1R (1B) substitution line using genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization (mc-FISH), multicolor GISH (mc-GISH) and molecular marker analysis.  Genetic analysis showed that the powdery mildew resistance in YT5 was derived from the rye chromosome arm 6RL.  After inoculation with different Bgt isolates at the seedling stage, YT5 had compound reaction patterns with both obvious spores and hypersensitivity, and it gradually became highly resistant until the adult-plant stage, thus showing a resistance response significantly different from the reported Pm genes from rye chromosome 6RL.  YT5 also showed promising agronomic performance, so it is expected to be an elite resistance donor for wheat improvement.  To promote the transfer of the chromosome arm 6RL of YT5 in marker-assisted selection (MAS) breeding, we selected and verified two 6RL-specific kompetitive allele-specific PCR (KASP) markers that can be applied to efficiently detect this chromosome arm in different wheat backgrounds.


Keywords:  powdery mildew       common wheat        Triticale        6RL ditelosomic addition line        agronomic performance        marker-assisted selection (MAS)  
Received: 18 May 2023   Accepted: 19 June 2023
Fund: 
This research was supported by the National Key Research and Development Program of China (2021YFD1200600) and the National Natural Science Foundation of China (32272105).
About author:  Guohao Han, E-mail: ghhan@ms.sjziam.ac.cn; #Correspondence Diaoguo An, Tel: +86-311-85871746, E-mail: dgan@sjziam.ac.cn; Lihui Li, E-mail: lilihui@caas.cn

Cite this article: 

Guohao Han, Jing Wang, Hanwen Yan, Lijun Cao, Shiyu Liu, Xiuquan Li, Yilin Zhou, Wei Liu, Tiantian Gu, Zhipeng Shi, Hong Liu, Lihui Li, Diaoguo An. 2025. Development and molecular cytogenetic identification of a new wheat–rye 6RL ditelosomic addition and 1R (1B) substitution line with powdery mildew resistance. Journal of Integrative Agriculture, 24(1): 72-84.

An D G, Han G H, Wang J, Yan H W, Zhou Y L, Cao L J, Jin Y L, Zhang X T. 2022. Cytological and genetic analyses of a wheat–rye 2RL ditelosomic addition line with adult plant resistance to powdery mildew. The Crop Journal10, 911–916.

An D G, Ma P T, Zheng Q, Fu S L, Li L H, Han F P, Han G H, Wang J, Xu Y F, Jin Y L, Luo Q L, Zhang X T. 2019. Development and molecular cytogenetic identification of a new wheat–rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theoretical and Applied Genetics132, 257–272.

An D G, Zheng Q, Luo Q L, Ma P T, Zhang H X, Li L H, Han F P, Xu H X, Xu Y F, Zhang X T. 2015. Molecular cytogenetic identification of a new wheat–rye 6R chromosome disomic addition line with powdery mildew resistance. PLoS ONE10, e0134534.

An D G, Zheng Q, Zhou Y L, Ma P T, Lv Z L, Li L H, Li B, Luo Q L, Xu H X, Xu Y F. 2013. Molecular cytogenetic characterization of a new wheat–rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Research21, 419–432.

Bai S S, Zhang H B, Han J, Wu J H, Li J C, Geng X X, Lv B Y, Xie S F, Han D J, Zhao J X, Yang Q H, Wu J, Chen X H. 2021. Identification of genetic locus with resistance to take-all in the wheat–Psathyrostachys huashanica Keng introgression line H148. Journal of Integrative Agriculture20, 3101–3113.

Chikmawati T, Miftahudin M, Skovmand B, Gustafson J P. 2012. Amplified fragment length polymorphism-based genetic diversity among cultivated and weedy rye (Secale cereale L.) accessions. Genetic Resources and Crop Evolution59, 1743–1752.

Cowger C, Meyers E, Whetten R. 2022. Sensitivity of the U.S. Wheat powdery mildew population to quinone outside inhibitor fungicides and determination of the complete Blumeria graminis f. sp. tritici cytochrome b gene. Phytopathology112, 249–260.

Edet O U, Kim J S, Okamoto M, Hanada K, Takeda T, Kishii M, Gorafi Y S A, Tsujimoto H. 2018. Efficient anchoring of alien chromosome segments introgressed into bread wheat by new Leymus racemosus genome-based markers. BMC Genetics19, 18.

Friebe B, Heun M, Tuleen N, Zeller F J, Gill B S. 1994. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Science34, 621–625.

Fu S L, Lv Z L, Qi B, Guo X, Li J, Liu B, Han F P. 2012. Molecular cytogenetic characterization of wheat–Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium Head Blight. Journal of Genetics and Genomics39, 103–110.

Han F P, Gao Z, Birchler J A. 2009. Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell21, 1929–1939.

Han G H, Li H W, Cao L J, Liu S Y, Yan H W, Wang J, Zhou Y L, An D G. 2022a. A novel wheat–rye 2R(2D) disomic substitution line pyramids two types of resistance to powdery mildew. Plant Disease106, 2433–2440.

Han G H, Liu S Y, Jin Y L, Jia M S, Ma P T, Liu H, Wang J, An D G. 2020a. Scale development and utilization of universal PCR-based and high-throughput KASP markers specific for chromosome arms of rye (Secale cereale L.). BMC Genomics21, 206.

Han G H, Liu S Y, Wang J, Jin Y L, Zhou Y L, Luo Q L, Liu H, Zhao H, An D G. 2020b. Identification of an elite wheat–rye T1RS·1BL translocation line conferring high resistance to powdery mildew and stripe rust. Plant Disease104, 2940–2948.

Han G H, Yan H W, Wang J, Cao L J, Liu S Y, Li X Q, Zhou Y L, Fan J R, Li L H, An D G. 2022b. Molecular cytogenetic identification of a new wheat–rye 6R addition line and physical localization of its powdery mildew resistance gene. Frontiers in Plant Science13, 889494.

Hickey L T, N Hafeez A, Robinson H, Jackson S A, Leal-Bertioli S C M, Tester M, Gao C, Godwin I D, Hayes B J, Wulff B B H. 2019. Breeding crops to feed 10 billion. Nature Biotechnology37, 744–754.

Hu W J, Fu L P, Gao D R, Li D S, Liao S, Lu C B. 2023. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15. Journal of Integrative Agriculture22, 360–370.

Jiang Y, Wang D L, Hao M, Zhang J, Liu D C. 2023. Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters. Journal of Integrative Agriculture22, 999–1008.

Li G W, Wang L J, Yang J P, He H, Jin H B, Li X M, Ren T H, Ren Z L, Li F, Han X, Zhao X G, Dong L L, Li Y W, Song Z P, Yan Z H, Zheng N N, Shi C L, Wang Z H, Yang S L, Xiong Z J, et al. 2021. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics53, 574–584.

Li J C, Li J J, Zhao L, Zhao J X, Wu J, Chen X H, Zhang L Y, Dong P H, Wang L M, Zhao D H, Wang C P, Pang Y H. 2023. Rapid identification of Psathyrostachys huashanica Keng chromosomes in wheat background based on ND-FISH and SNP array methods. Journal of Integrative Agriculture22, 2934–2948.

Li J J, Zhao L, Lv B Y, Fu Y, Zhang S F, Liu S H, Yang Q H, Wu J, Li J C, Chen X H. 2023. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance. Journal of Integrative Agriculture22, 1291–1307.

Li M, Tang Z X, Qiu L, Wang Y Y, Tang S Y, Fu S L. 2016. Identification and physical mapping of new PCR-based markers specific for the long arm of rye (Secale cereale L.) chromosome 6. Journal of Genetics and Genomics43, 199–206.

Li S N, Lin D X, Zhang Y W, Deng M, Chen Y X, Lv B, Li B S, Lei Y, Wang Y P, Zhao L, Liang Y T, Liu J X, Chen K L, Liu Z Y, Xiao J, Qiu J L, Gao C X. 2022. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature602, 455–460.

Li Y, Wei Z, Sela H, Govta L, Klymiuk V, Roychowdhury R, Chawla H S, Ens J, Wiebe K, Bocharova V, Ben-David R, Pawar P B, Zhang Y, Jaiwar S, Molnár I, Doležel J, Coaker G, Pozniak C J, Fahima T. 2023. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69Plant Communications5, 100646.

Liu C, Wang J, Fu S L, Wang L, Li H W, Wang M, Huang Y H, Shi Q H, Zhou Y H, Guo X R, Zhu C L, Zhang J, Han F P. 2022. Establishment of a set of wheat–rye addition lines with resistance to stem rust. Theoretical and Applied Genetics135, 2469–2480.

Lukaszewski A J. 1990. Frequency of 1RS·1AL and 1RS·1BL translocations in United States wheats. Crop Science30, 1151–1153.

Ma D F, Hou L, Sun C, Zhang X, Yin J L, Guo Q Y, Zhu Y X. 2019. Molecular mapping of stripe rust resistance gene YrH9017 in wheat–Psathyrostachys huashanica introgression line H9017-14-16-5-3. Journal of Integrative Agriculture18, 108–114.

Ma P T, Han G H, Zheng Q, Liu S Y, Han F P, Wang J, Luo Q L, An D G. 2020. Development of novel wheat–rye chromosome 4R translocations and assignment of their powdery mildew resistance. Plant Disease104, 260–268.

Mapuranga J, Chang J Y, Yang W X. 2022. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. Frontiers in Plant Science13, 1102908.

McIntosh R A, Dubcovsky J, Rogers W J, Xia X C, Raupp W J. 2019. Catalogue of gene symbols for wheat: 2019 supplement. In: Raupp W J, ed., Annual Wheat Newsletter. Kansas State University, Manhattan, NY. pp. 98–113.

Mu Y J, Gong W P, Qie Y M, Liu X Q, Li L Z, Sun N N, Liu W, Guo J, Han R, Yu Z Y, Xiao L N, Su F Y, Zhang W J, Wang J C, Han G H, Ma P T. 2022. Identification of the powdery mildew resistance gene in wheat breeding line Yannong 99102-06188 via bulked segregant exome capture sequencing. Frontiers in Plant Science13, 1005627.

Oettler G, Tams S H, Utz H F, Bauer E, Melchinger A E. 2005. Prospects for hybrid breeding in winter triticale. Crop Science45, 1476–1482.

Qu Y F, Wu P P, Hu J H, Chen Y X, Shi Z L, Qiu D, Li Y H, Zhang H J, Zhou Y, Yang L, Liu H W, Zhu T Q, Liu Z Y, Zhang Y M, Li H J. 2020. Molecular detection of the powdery mildew resistance genes in winter wheats DH51302 and Shimai 26. Journal of Integrative Agriculture19, 931–940.

Rabanus-Wallace M T, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, Baez M, Houben A, Mayer K F X, Guo L L, Poland J, Pozniak C J, Walkowiak S, Melonek J, Praz C R, Schreiber M, Budak H, Heuberger M, Steuernagel B, Wulff B, et al. 2021. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics53, 564–573.

Ren T H, Chen F, Zou Y T, Jia Y H, Zhang H Q,Yan B J, Ren Z L. 2011. Evolutionary trends of microsatellites during speciation process and phylogenetic relationships in the genus SecaleGenome54, 316–326.

Ren T H, Jiang Q, Sun Z X, Zhao L Q, Peng W H, Ren Z L, Tan F Q, Luo P G, Li Z. 2022a. Development and molecular cytogenetic characterization of novel primary wheat–rye 1RS·1BL translocation lines from multiple rye sources with resistance to stripe rust. Plant Disease106, 2191–2200.

Ren T H, Sun Z X, Hu Y L, Ren Z L, Tian F Q, Luo P G, Li Z. 2022b. Molecular cytogenetic identification of new wheat–rye 6R, 6RS, and 6RL addition lines with resistance to stripe rust and powdery mildew. Frontiers in Plant Science13, 992016.

Ren T H, Yang Z J, Yan B J, Zhang H Q, Fu S L, Ren Z L. 2009. Development and characterization of a new 1BL·1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica169, 207–213.

nchez-Martín J, Widrig V, Herren G, Wicker T, Zbinden H, Gronnier J, Spörri L, Praz C R, Heuberger M, Kolodziej M C, Isaksson J, Steuernagel B, Karafiátová M, Doležel J, Zipfel C, Keller B. 2021. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nature Plants7, 327–341.

Schneider A, Rakszegi M, Molnár-Láng M, Szakács É. 2016. Production and cytomolecular identification of new wheat–perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theoretical and Applied Genetics129, 1045–1059.

Sheng B Q, Duan X Y. 1991. Improvement of scale 0–9 method for scoring adult plant resistance to powdery mildew of wheat. Beijing Agricultural Sciences1, 38–39. (in Chinese)

Si Q M, Zhang X X, Duan X Y, Sheng B Q, Zhou Y L. 1992. On gene analysis and classification of powdery mildew (Erysiphe graminis f. sp. tritici) resistant wheat varieties. Acta Phytopathology Sinica22, 349–355. (in Chinese)

Song Z P, Zuo Y Y, Xiang Q, Li W J, Li J, Liu G, Dai S F, Yan Z H. 2023. Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein. Journal of Integrative Agriculture22, 1258–1265.

Sun H G, Hu J H, Wei S, Qiu D, Cui L, Wu P P, Zhang H J, Liu H W, Yang L, Qu Y F, Li Y H, Li T, Cheng W, Zhou Y, Liu Z Y, Li J T, Li H J. 2018. Pm61: A recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. Theoretical and Applied Genetics131, 1–13.

Tang Z X, Yang Z J, Fu S L. 2014. Oligonucleotides replacing the roles of sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics55, 313–318.

Targońska M, Bolibok-Brągoszewska H, Rakoczy-Trojanowska M. 2016. Assessment of genetic diversity in Secale cereale based on SSR markers. Plant Molecular Biology Reporter34, 37–51.

Wang D, Zhuang L F, Sun L, Feng Y G, Pei Z Y, Qi Z J. 2010. Allocation of a powdery mildew resistance locus to the chromosome arm 6RL of Secale cereale L. cv. ‘Jingzhouheimai’. Euphytica176, 157–166.

Wang X L, Han R, Chen Z W, Li J B, Zhu T, Guo J, Xu W J, Zi Y, Li F J, Zhai S N, Li H S, Liu J J, Liu A F, Cheng D G, Song J M, Jia J Q, Ma P T, Liu C. 2022. Identification and evaluation of wheat–Aegilops bicornis lines with resistance to powdery mildew and stripe rust. Plant Disease106, 864–871.

Wu L R, Zhu T, He H G, Cao X Y, Li H S, Xu H X, Jia M S, Zhang L P, Song J C, Mirzaghaderi G, Liu C, Ma P T. 2022. Genetic dissection of the powdery mildew resistance in wheat breeding line LS5082 using BSR-Seq. The Crop Journal10, 1120–1130.

Xu S R, Jiang B, Han H M, Ji X J, Zhang J P, Zhou S H, Yang X M, Li X Q, Li L H, Liu W H. 2023. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in a wheat background. Journal of Integrative Agriculture22, 52–62.

Zhang P P, Takele W G, Zhou Y, Li Q L, Li Z F, Liu D Q. 2019. Seedling and adult plant resistance to leaf rust in 46 Chinese bread wheat landraces and 39 wheat lines with known Lr genes. Journal of Integrative Agriculture18, 1014–1023.

Zhu S Y, Du H N, Su F Y, Wang J, Meng Q F, Liu T L, Guo R, Chen Z Z, Li H H, Liu W X, Ma P T, He H G. 2023. Molecular cytogenetic analyses of two new wheat–rye 6RL translocation lines with resistance to wheat powdery mildew. The Crop Journal11, 584–592.

[1] LI Cheng-yang, ZHANG Nan, GUAN Bin, ZHOU Zhu-qing, MEI Fang-zhu . Reactive oxygen species are involved in cell death in wheat roots against powdery mildew[J]. >Journal of Integrative Agriculture, 2019, 18(9): 1961-1970.
[2] HU Li-qin, MU Jing-jing, SU Pei-sen, WU Hong-yan, YU Guang-hui, WANG Gui-ping, WANG Liang, MA Xin, LI An-fei, WANG Hong-wei, ZHAO Lan-fei, KONG Ling-rang . Multi-functional roles of TaSSI2 involved in Fusarium head blight and powdery mildew resistance and drought tolerance
 
[J]. >Journal of Integrative Agriculture, 2018, 17(2): 368-380.
[3] ZHANG Lei, ZHENG Xing-wei, QIAO Lin-yi, QIAO Ling, ZHAO Jia-jia, WANG Jian-ming, ZHENG Jun. Analysis of three types of resistance gene analogs in PmU region from Triticum urartu[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2601-2611.
[4] ZOU Ya-fei, QIAO Hong-bo, CAO Xue-ren, Liu Wei, FAN Jie-ru, SONG Yu-li, WANG Bao-tong, ZHOU Yi-lin. Regionalization of wheat powdery mildew oversummering in China based on digital elevation[J]. >Journal of Integrative Agriculture, 2018, 17(04): 901-910.
[5] XU Xiao-dan, FENG Jing, FAN Jie-ru, LIU Zhi-yong, LI Qiang, ZHOU Yi-lin, MA Zhan-hong. Identification of the resistance gene to powdery mildew in Chinese wheat landrace Baiyouyantiao[J]. >Journal of Integrative Agriculture, 2018, 17(01): 37-45.
[6] LIU Chang, YE Xing-guo, WANG Mei-jiao, LI Shi-jin, LIN Zhi-shan. Genetic behavior of Triticum aestivum–Dasypyrum villosum translocation chromosomes T6V#4S·6DL and T6V#2S·6AL carrying powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2136-2144.
[7] XIE Jing-zhong, WANG Li-li, WANG Yong, ZHANG Huai-zhi, ZHOU Sheng-hui, WU Qiu-hong, CHEN Yong-xing, WANG Zhen-zhong, WANG Guo-xin, ZHANG De-yun, ZHANG Yan, HU Tie-zhu, LIU Zhi-yong. Fine mapping of powdery mildew resistance gene PmTm4 in wheat using comparative genomics[J]. >Journal of Integrative Agriculture, 2017, 16(03): 540-550.
[8] ZHANG Dong, OUYANG Shu-hong, WANG Li-li, CUI Yu, WU Qiu-hong, LIANG Yong, WANG Zhen-zhong, XIE Jing-zhong, ZHANG De-yun, WANG Yong, CHEN Yong-xing, LIU Zhi-yong. Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL[J]. >Journal of Integrative Agriculture, 2015, 14(4): 603-609.
[9] CAO Xue-ren, YAO Dong-ming, DUAN Xia-yu, LIU Wei, FAN Jie-ru, DING Ke-jian, ZHOU Yi-lin. Effects of Powdery Mildew on 1000-Kernel Weight, Crude Protein Content and Yield of Winter Wheat in Three Consecutive Growing Seasons[J]. >Journal of Integrative Agriculture, 2014, 13(7): 1530-1537.
[10] Pietro D Spanu. Messages from Powdery Mildew DNA: How the Interplay with a Host Moulds Pathogen Genomes[J]. >Journal of Integrative Agriculture, 2014, 13(2): 233-236.
[11] ZHANG Jing-cheng, YUAN Lin, WANG Ji-hua, HUANG Wen-jiang, CHEN Li-ping, ZHANG Dong-yan. Spectroscopic Leaf Level Detection of Powdery Mildew for Winter Wheat Using Continuous Wavelet Analysis[J]. >Journal of Integrative Agriculture, 2012, 12(9): 1474-1484.
[12] REN Hong-min, FAN Fan, CAO Ke-qiang. Ultrastructural Changes of Sphaerotheca fuliginea (Schlechtend.:Fr.) Pollacci in Cucumber After Treated by Chrysophanol[J]. >Journal of Integrative Agriculture, 2012, 12(6): 970-977.
[13] LI Ning, JIA Shao-feng, WANG Xiu-na, DUAN Xia-yu, ZHOU Yi-lin, WANG Zong-hua , LU Guodong . The Effect of Wheat Mixtures on the Powdery Mildew Disease and Some Yield Components[J]. >Journal of Integrative Agriculture, 2012, 12(4): 611-620.
No Suggested Reading articles found!