Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Adapting maize cultivation to late sowing: integrated strategies of planting density and hybrid maturity to ensure production

Jing Chen, Lei Wang, Enbo Liu, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang#

College of Agronomy, Shandong Agricultural University, Tai’an 271018, China

 Highlights 

1 Post-silking GDD over 728℃ d enabled yield gains from raising planting density.

2 Raising density to 82500 plants ha−1 mitigated yield losses in late-June sowing.

3 Early-maturing hybrids at low density reduced yield losses in early-July sowing.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

气候变暖及降水时空分布不确定性的加剧,导致夏玉米播期延迟现象日益频发,严重威胁玉米稳产与机械化收获质量。本研究旨在通过优化种植密度与品种熟期配置,探索不同晚播情景下减轻产量损失、提升机械收获质量的调控途径及其作用机制。2022–2024年,在黄淮海平原设置田间试验,设置3个播期(6月中旬、6月下旬、7月上旬)、3种植密度(675008250097500/公顷)以及2个品种(早熟型和晚熟)。结果表明,玉米生产对种植密度的响应主要受吐丝后有效积温调控。当吐丝后有效积温高于728℃·d时,增加密度至82500/公顷可显著增加叶面积指数(17.0%)、冠层光截获率(4.2%)和最大灌浆速率(15.5%),从而促进吐丝后干物质积累量提高8.6%并将晚播导致的产量损失降低7.1%。选用早熟品种更有利于在维持产量的同时降低收获籽粒含水量(7.2%)2030s6月下旬播种,上述优化措施可适用于黄淮海平原94.6%以上的区域。然而,当吐丝后有效积温低于685℃·d时,积温不足显著抑制个体与群体水平上的玉米生长,导致产量损失达41.5%,籽粒含水量增加53.8%7月上旬播种,87%的区域无法通过增加密度弥补产量损失。在此条件下,采用较低密度配合早熟品种更有利于减轻产量损失、降低收获籽粒含水量,尤其在33.7°N以北区域。本研究结果为气候变暖与降水不确定性增加背景下缓解晚播造成的产量损失提供了理论依据与调控策略。



Abstract  

Climate warming and the increasing unpredictability of precipitation have led to frequent sowing delays for summer maize, severely affecting maize production.  This study aimed to identify strategies to minimize yield losses and enhance mechanical harvest quality under various late-sowing scenarios by optimizing planting density and hybrid maturity, along with understanding the underlying mechanisms.  A field experiment was conducted from 2022 to 2024 in the Huanghuaihai Plain (HHHP), China, involving three sowing dates (mid-June, late-June and early-July), three planting densities (67,500, 82,500 and 9,7500 plants ha−1), and two hybrid types (early-maturing and late-maturing).  The results showed that maize production’s response to planting density was governed by post-silking growing degree days (GDD).  When post-silking GDD exceeded 728℃ d, increasing planting density to 82,500 plants ha−1 significantly enhanced leaf area index (17.0%), canopy radiation interception (4.2%) and maximum grain filling rate (15.5%), thereby increasing post-silking dry matter accumulation by 8.6% and mitigating yield losses from delayed sowing by 7.1%.  Planting early-maturing hybrids was more conducive to reducing harvest grain moisture by 7.2% while maintaining yield.  These optimized practices are applicable to over 94.6% of regions in HHHP under late-June sowing scenarios in the 2030s.  Conversely, when post-silking GDD was below 685℃ d, insufficient GDD significantly inhibited maize growth at both individual and population levels, resulting in 41.5% yield losses and a 53.8% increase in grain moisture.  About 87% of regions cannot compensate for yield losses by increasing planting density. Under these conditions, planting early-maturing hybrids at lower densities proved more advantageous for minimizing yield loss and grain moisture at harvest, especially north of 33.7°N.  These findings provide a theoretical basis for strategies to reduce yield loss from late sowing under climate warming and unpredictable rainfall.

Keywords:  late-sown maize              planting density              hybrid maturity              yield              harvest grain moisture  
Online: 16 January 2026  
Fund: 

This work was supported by the National Natural Science Foundation of China (32172115) and the National Modern Agriculture Industry Technology System (CARS-02-21).

About author:  #Correspondence Jiwang Zhang, Tel: +86-538-8241485, Fax: +86-538 8242226, E-mail: jwzhang@sdau.edu.cn

Cite this article: 

Jing Chen, Lei Wang, Enbo Liu, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang. 2026. Adapting maize cultivation to late sowing: integrated strategies of planting density and hybrid maturity to ensure production. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.025

Borrás L, Vitantonio-Mazzini L N. 2018. Maize reproductive development and kernel set under limited plant growth environments. Journal of Experimental Botany, 69, 3235–3243.

Chen J, Ren B Z, Zhao B, Liu P, Zhang J W. 2024. The environment, especially the minimum temperature, affects summer maize grain yield by regulating ear differentiation and grain development. Journal of Integrative Agriculture, 23, 2227–2241.

Dadrasi A, Soltani E, Makowski D, Lamichhane J R. 2024. Does shifting from normal to early or late sowing dates provide yield benefits? A global meta-analysis. Field Crops Research, 318, 109600.

Fernandez J A, Messina C D, Salinas A, Prasad P V V, Nippert J B, Ciampitti I A. 2022. Kernel weight contribution to yield genetic gain of maize: A global review and US case studies. Journal of Experimental Botany, 73, 3597–3609.

Gambin B L, Borrás L, Otegui M E. 2007. Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Research, 101, 1–9.

Gambin B L, Di Salvo J I, Sciarresi C, Trifunovic S, Narvel J, Zhou X B, Lamkey K, Archontoulis S V. 2023. Maize kernel weight genetic gain is achieved through different mechanisms depending on the hybrid maturity. Field Crops Research, 303, 109123.

Gampe D, Zscheischler J, Reichstein M, O’Sullivan M, Smith W K, Sitch S A, Buermann W. 2021. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nature Climate Change, 11, 772–779.

Gao S, Ming B, Liu G Z, Zhang G Q, Li Y Y, Xue J, Wang K, Zhou S L, Xie R Z, Li S K. 2024. Increasing plant density improved maize yield without penalty of harvest grain moisture in extensive field trials. Annals of Agricultural Sciences, 69, 33–43.

Guardia G, Abalos D, Mateo-Marín N, Nair D, Petersen S O. 2023. Using DMPP with cattle manure can mitigate yield-scaled global warming potential under low rainfall conditions. Environmental Pollution, 316, 120679.

Hao B Z, Ma J L, Si S H, Wang X J, Wang S L, Li F M, Jiang L N. 2024. Response of grain yield and water productivity to plant density in drought-tolerant maize cultivar under irrigated and rainfed conditions. Agricultural Water Management, 298, 108880.

Hu J, Ren B Z, Dong S T, Liu P, Zhao B, Zhang J W. 2022. Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging. The Crop Journal, 10, 478–489.

Ishfaq S, Ding Y, Liang X Y, Guo W. 2025. Advancing lodging resistance in maize: Integratinggenetic, hormonal, and agronomic insights for sustainable crop productivity. Plant Stress, 15, 100777.

Jia X C, Li F L, Miao Z Y, Li X Y, Sun L K, Wei Y P, Yang K N, Guo H Z, Song R, Shang H P, Feng X L, Li Y X, Li R F, Wang Q. 2024. Cultivar mixtures of maize enhance grain yield and nitrogen use efficiency by promoting canopy photosynthetically active radiation and root growth. Journal of Integrative Agriculture, available online (no volum, page?).

Júnior R S N, Fraisse C W, Bashyal M, Mulvaney M J, Seepaul R, Karrei M A Z, Iboyi J E, Perondi D, Cerbaro V A, Boote K J. 2022. Brassica carinata as an off-season crop in the southeastern USA: Determining optimum sowing dates based on climate risks and potential effects on summer crop yield. Agricultural Systems, 196, 103344.

Kotz M, Lange S, Wenz L, Levermann A. 2024. Constraining the pattern and magnitude of projected extreme precipitation change in a multimodel ensemble. Journal of Climate, 37, 97–111.

Krell N T, Morgan B E, Gower D, Caylor K K. 2021. Consequences of dryland maize planting decisions under increased seasonal rainfall variability. Water Resources Research, 57, e2020WR029362.

Kusmec A, Schnable P S. 2024. Phenological adaptation is insufficient to offset climate change-induced yield losses in US hybrid maize. Global Change Biology, 30, e17539.

Lan T Q, Du L J, Wang X L, Zhan X X, Liu Q L, Wei G, Lyu C C, Liu F, Gao J X, Feng D J, Kong F L, Yuan J C. 2024. Synergistic effects of planting density and nitrogen fertilization on chlorophyll degradation and leaf senescence after silking in maize. The Crop Journal, 12, 605–613.

Li J, Bevacqua E, Wang Z L, Sitch S, Arora V, Arneth A, Jain A K, Goll D, Tian H Q, Zscheischler J. 2023. Hydroclimatic extremes contribute to asymmetric trends in ecosystem productivity loss. Communications Earth & Environment, 4, 197.

Li S Y, Zhang Y Q, Liu X J, Liu J S, Liu G, Yan D, Wu W F. 2024. The economic, health, and environmental impacts of both visible and invisible maize losses in Jilin, China. Journal of Cleaner Production, 476, 143770.

Li T, Wang J T, Dong X L, Hu Y Z, Sun F C, Zhang X Q, Xiao Y, Zhang D M, Sun H Y. 2025. Yield gaps and the driving factors under different plant density of spring maize in North China Plain. European Journal of Agronomy, 170, 127745.

Li T, Zhang X P, Liu Q, Liu J, Chen Y Q, Sui P. 2022. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review. Journal of Integrative Agriculture, 21, 2465–2476.

Li Y T, Xu W W, Ren B Z, Zhao B, Zhang J W, Liu P, Zhang Z S. 2020. High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II. Journal of Agronomy and Crop Science, 206, 548–564.

Lizaso J I, Batchelor W D, Westgate M E, Echarte L. 2003. Enhancing the ability of CERES-maize to compute light capture. Agricultural Systems, 76, 293–311.

Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. 2023. China can be self-sufficient in maize production by 2030 with optimal crop management. Nature Communications, 14, 2637.

Ma R Q, Cao N, Li Y Y, Hou Y L, Wang Y J, Zhang Q, Wang T L, Cui J H, Li B, Shi W L, Zhang Y B. 2024. Rational reduction of planting density and enhancement of NUE were effective methods to mitigate maize yield loss due to excessive rainfall. European Journal of Agronomy, 160, 127326.

Massigoge I, Carcedo A, Lingenfelser J, Hefley T, Prasad P V V, Berning D, Lira S, Messina C D, Rice C W, Ciampitti I. 2023. Maize planting date and maturity in the US central Great Plains: Exploring windows for maximizing yields. European Journal of Agronomy, 149, 126905.

Mauro G D, Rottli D H, Parra G, Gambin B L, Costanzi J, Micheloud J, Martini G, Paolini M, Schwalbert R. 2025. Revisiting plant density by environment interaction in maize across contrasting sowing dates. Field Crops Research, 328, 109917.

NBSC (National Bureau of Statistics of China). 2024. China Rural Statistical Yearbook. China Statistics Press, Beijing. p. 379−385. (in Chinese)

Shah L, Yahya M, Shah S M A, Nadeem M, Ali A, Ali A, Wang J, Riaz M W, Rehman S, Wu W, Khan R M, Abbas A, Riaz A, Anis G B, Si H, Jiang H, Ma C. 2019. Improving lodging resistance: Using wheat and rice as classical examples. International Journal of Molecular Sciences, 20, 4211.

Shao H, Wu X B, Duan J H, Zhu F B, Chi H H, Liu J H, Shi W J, Xu Y, Wei Z B, Mi G H. 2024. How does increasing planting density regulate biomass production, allocation, and remobilization of maize temporally and spatially: A global meta-analysis. Field Crops Research, 315, 109430.

Shi W J, Shao H, Sha Y, Shi R, Shi D F, Chen Y C, Ban X B, Mi G H. 2022. Grain dehydration rate is related to post-silking thermal time and ear characters in different maize hybrids. Journal of Integrative Agriculture, 21, 964–976.

Shirazi S Z, Liu B C, Liu Y, Han R, Zhu Y C, Qiao O M, Che H L, Zhang Y M, Mei X R. 2024. Understanding climate variability and its impact on drought occurrences in maize producing regions: Evidence from north of China. Agricultural Water Management, 306, 109150.

Su Y C, Sun P W, Dai H Y, Kuo B J. 2025. Evaluating the impact of weather variability on maize yield fluctuation for different sowing dates. Agricultural and Forest Meteorology, 371, 110625.

Wang X Y, Wu X P, Hua Y Z, Li Y Q, Ma L C, Gong Y H, Zhu W C, Xu S T, Xue J Q, Qin X L, Siddique K H M. 2025. Optimizing maize production in the Guanzhong Region: An evaluation of density tolerance, yield, and mechanical harvesting characteristics in different maize varieties. European Journal of Agronomy, 164, 127500. 

Wang Y, Shen Y J, Yu S, Zhang X L, Xiao D P. 2025. Climate extremes are critical to maize yield and will be severer in North China. Climate Risk Management, 48, 100710.

Wang Y Y, Zhang L L, Zhou N, Xu L N, Zhu J C, Tao H B, Huang S B, Wang P. 2018. Late harvest and foliar fungicide acted together to minimize climate change effects on summer maize yield in the North China Plain during 1954–2015. Agriculture, Ecosystems & Environment, 265, 535–543.

Xiao D P, Liu D L, Wang B, Feng P Y, Waters C. 2020. Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain. Agricultural Systems, 181, 102805.

Yan Y Y, Duan F Y, Li X, Zhao R L, Hou P, Zhao M, Li S K, Wang Y H, Dai T B, Zhou W B. 2024. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiology, 195, 2652–2667.

Zhang G X, Cui C E, Lv Y F, Wang X Y, Wang X F, Zhao D H, Hu F S, Wen X X, Han J, Liao Y C. 2024. Is it necessary to increase the maize planting density in China? European Journal of Agronomy, 159, 127235.

Zhang X D, Xiong H X, Wang R, Li J J, Dong Z Y, Jia Z K, Han Q F. 2025. Adaptive sowing window strategy for improving grain filling and water loss characteristics of film-mulched maize in Northwest China. Field Crops Research, 326, 109855.

Zhao J Y, Xue Y Q, Alam S, Liu P, Ren B Z, Zhao B, Yu N N, Zhang J W. 2025. Optimizing planting density and post-silking growth degree days effectively accelerates summer maize grain dehydration. European Journal of Agronomy, 168, 127584.

Zhou B Y, Yue Y, Sun X F, Ding Z S, Ma W, Zhao M. 2017. Maize kernel weight responses to sowing date-associated variation in weather conditions. The Crop Journal, 5, 43−51.

Zhou L F, Han X L, Yang Q L, Feng H, Siddique K H M. 2024. Optimizing sowing date to mitigate loss of growing degree days and enhance crop water productivity of groundwater-irrigated spring maize. Agricultural Water Management, 305, 109097.

Zhou J Y, Lu H. 2023. China downscaled CMIP6 precipitation, temperature and wind speed dataset (1979-2100). National Tibetan Plateau / Third Pole Environment Data Center. https://data.tpdc.ac.cn/zh-hans/data/

Zhou J Y, Lu H, Yang K, Jiang R Y, Yang Y, Wang W, Zhang X J. 2023. Projection of China’s future runoff based on the CMIP6 mid-high warming scenarios. Science China Earth Sciences, 66, 528–546.

Zhu G X, Liu Z J, Qiao S L, Zhang Z T, Huang Q W, Su Z G, Yang X G. 2022. How could observed sowing dates contribute to maize potential yield under climate change in Northeast China based on APSIM model. European Journal of Agronomy, 136, 126511.

Zhu P, Jin Z, Zhuang Q, Ciais P, Bernacchi C, Wang X H, Makowski D, Lobell D. 2018. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Global Change Biology, 24, 4718–4730.

[1] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[2] Meihui Wang, Wenqian Jiang, Yuxi Fu, Yi Wang, Xinliang Liu, Jianlin Shen, Feng Liu, Yong Li. Development of a smart device android-based decision support system for controlling non-point source nitrogen and phosphorus pollution in an agricultural catchment[J]. >Journal of Integrative Agriculture, 2026, 25(2): 565-576.
[3] Jingye Cheng, Rui Pan, Wenying Zhang, Tianhua He, Chengdao Li. An ancient super allele of the Vrs1 gene driving the recent success in modern barley improvement through optimising spike architecture[J]. >Journal of Integrative Agriculture, 2026, 25(2): 602-609.
[4] Valensi Kautsar, Takamori Kanno, Kaho Sakai, Riza Kurnia Sabri, Keitaro Tawaraya, Kazunobu Toriyama, Kazuhiko Kobayashi, Weiguo Cheng. Reconstructed organic rice fields: Effects on soil organic carbon, total nitrogen, their mineralization, and rice yield in Japanese Andosols[J]. >Journal of Integrative Agriculture, 2026, 25(2): 493-500.
[5] Haimei Qin, Xiaoxuan Jia, Zhenwen Huang, Yifei Zhi, Na Ji, Meiyu Lan, Lang Zhang, Xingting Liu, Huiyan Xu, Yangqing Lu. Establishing an induced infertile chicken line for efficient germline transmission of exogenous PGCs[J]. >Journal of Integrative Agriculture, 2026, 25(1): 227-234.
[6] Xiaofang Cheng, Yi Xiao, Luhui Wang, Xiaoying Yang, Pingchuan Deng, Jixin Zhao, Changyou Wang, Chunhuan Chen, Tingdong Li, Wanquan Ji. Cytogenetic characterization and molecular marker development of a novel wheat-Thinopyrum ponticum 5E (5D) disomic substitution line with resistance to powdery mildew and stripe rust[J]. >Journal of Integrative Agriculture, 2026, 25(1): 30-41.
[7] Munwar Ali, Chang Xu, Qazal Hina, Aoyun Li, Kun Li. Interrelations between probiotics, gut microbiota, intestinal barrier, and immune response focusing on diarrhea in dairy calves[J]. >Journal of Integrative Agriculture, 2026, 25(1): 16-29.
[8] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[9] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[10] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[11] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[12] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[13] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[14] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[15] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
No Suggested Reading articles found!