Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change

Baohua Liu1, 2, Ganqiong Li2, Yongen Zhang2, Ling Zhang1, 3, Dianjun Lu1, 4, Peng Yan1, 5, Shanchao Yue1, 6, Gerrit Hoogenboom7, Qingfeng Meng1#, Xinping Chen1, 8

1 China Agricultural University, Beijing 100193, China
2 Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs / Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3 Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
4 Institute Soil Science, State Key Lab Soil & Sustainable Agricultural, Chinese Academy of Sciences, Nanjing 21008, China
5 Tea Research Institute, Chinese Academy Agricultural Science, Hangzhou 310008, China
6 Institute Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
7 Institute for Sustainable Food Systems, University of Florida, Gainesville, Florida 32611, USA
8 College of Resources and Environment, Academy of Agricultural Sciences, Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Southwest University, Chongqing 400044, China

 Highlights 

1. Wheat yield potential averaged 10.8 t ha-1, limited by pre-winter growing degree days (GDD) and seasonal solar radiation.

2. Wheat yield potential decline in the future due to climatic warming and solar dimming, but CO2 fertilization effect could offset these negative impacts.

3. Adopting multiple management practices that account for complex climate–crop–soil interconnections could enhance wheat yield.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

准确估算气候变化背景下小麦产量潜力对于评估粮食生产能力至关重要。然而,基于不完全优化的田间试验校验的作物机理模型往往低估了小麦的产量潜力。本研究基于CERES-Wheat模型和管理良好的十年长期定位试验数据,定量评估华北平原小麦产量潜力,并明确了影响产量潜力缩小产量差的关键限制因素。结果表明,近十年华北平原小麦的平均产量潜力为10.8 t/ha-1,冬前积温(592)和生育季太阳辐射(3036 MJ/m²)不足是限制产量潜力的关键气候因素。在不考虑CO2浓度升高的情况下,预计2040-2059年间,华北平原小麦的产量潜力在RCP4.5RCP8.5情景下将分别下降1.8%5.1%然而CO2的施肥效应足以抵消气候变暖和太阳辐射下降的负面影响,最终使2040-2059年间小麦产量潜力在RCP4.5RCP8.5情景下分别提高7.5%9.8%此外,105日播种以及每平米400株的播种密度能最佳匹配华北平原的光热资源,最大化小麦的产量潜力;优化灌溉制度(3次,270mm)和根层土壤氮素管理措施可以有效缩小产量差。本研究强调了基于气候-作物-土壤协同综合管理策略对提高华北平原小麦产量潜力和缩小产量差的重要性。



Abstract  

Accurately estimating wheat yield potential under climate changes is essential to assess food production capacity.  However, studies based on crop modeling and imperfect management experiment data frequently underestimate the wheat yield potential.  In this study, we evaluated wheat yield potential based on CERES-wheat model and a well-managed 10-year (2008-2017) field observation in the North China Plain (NCP), and further identified the critical climate and management yield-limiting factors for improving wheat yield potential and closing wheat yield gap.  Our results revealed that wheat yield potential averaged 10.8 t ha-1 in the recent decade.  The low growing degree days (GDD) in the pre-winter growing season (592) and solar radiation in the whole growth season (3,036 MJ m-2) are the most critical climatic limiting factors of wheat yield potential in the current production system.  Nonetheless, wheat yield potential in the NCP is projected to decline during 2040-2059 by 1.8 and 5.1% under RCP4.5 and RCP8.5 scenarios, respectively, without considering the elevated CO2 concentration.  However, the positive influence of CO2 fertilization is sufficient to offset these negative impacts from climatic warming and solar dimming, ultimately leading to an enhancement in wheat yield potential by 7.5 and 9.8% during 2040-2059 compared to the baseline under RCP4.5 and RCP8.5, respectively.  We recommend selecting an appropriate planting date (5 October) and planting density (400 plants m-2) that align with light and temperature conditions during the wheat growing season, thereby improving wheat yield potential.  Additionally, optimizing the timing and rate of water application (three times, 270 mm) and fertilizer use (based on in-season root zone nitrogen management) is crucial for closing the wheat yield gap.  Our study underscores the importance of adopting multiple management practices that account for complex climate–crop–soil interconnections to enhance wheat yield based on a long-term field experiment under the changing climate.

Keywords:  CERES-wheat              climate change       field observation       management strategy       yield potential  
Online: 17 March 2025  
Fund: 

This work was supported by the National Key Research and Development Program of China (2023YFD2302801), the Central Public-interest Scientific Institution Basal Research Fund of Chinese Academy of Agricultural Sciences (JBYW-AII-2024-38), and the Fundamental Research Funds for the Central Universities and China Scholarship Council.  

About author:  #Correspondence Qingfeng Meng, E-mail: mengqf@cau.edu.cn

Cite this article: 

Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. 2025. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.03.004

Asseng S, Ewert F, Martre P, Rötter R P, Lobell D B, Cammarano D, Kimball B A, Ottman M J, Wall G W, White J W, Reynolds M P, Alderman P D, Prasad P V V, Aggarwal P K, Anothai J, Basso B, Biernath C, Challinor A J, De Sanctis G, Doltra J, et al. 2015. Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143-147.

Asseng S, Jamieson P D, Kimball B, Pinter P, Sayre K, Bowden J W, Howden S M. 2004. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Research, 85, 85-102.

Beven K, Binley A. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes6, 279–298.

Challinor A J, Watson J, Lobell D B, Howden S M, Smith D R, Chhetri N. 2014. A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4, 287-291.

Chen C, Baethgen W E, Robertson A. 2013. Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003. Climatic Change, 116, 767-788.

Chen C, Wang E, Yu Q, Zhang Y. 2010. Quantifying the effects of climate trends in the past 43 years (1961–2003) on crop growth and water demand in the North China Plain. Climatic Change, 100, 559-578.

Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, et al. 2014. Producing more grain with lower environmental costs. Nature, 514, 486-489.

Chen Y, Zhang Z, Tao F, Wang P, Wei X. 2017. Spatio-temporal patterns of winter wheat yield potential and yield gap during the past three decades in North China. Field Crops Research, 206, 11-20.

CSY. 2023. China statistical yearbook. [2023-11-21]. https://data.stats.gov.cn/

Cui Z, Chen X, Miao Y, Li F, Zhang F, Li J, Ye Y, Yang Z, Zhang Q, Liu C. 2008. On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China plain. Agronomy Journal, 100, 1527–1534.

Cui Z, Zhang H, Chen X, Zhang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X, Gao Q, Yang J, Wang Z, Ye Y, Guo S, Lu J, Huang J, Lv S, Sun Y, Liu Y, et al. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555, 363-366.

Deryng D, Elliott J, Folberth C, Müller C, Pugh T A M, Boote K J, Conway D, Ruane A C, Gerten D, Jones J W, Khabarov N, Olin S, Schaphoff S, Schmid E, Yang H, Rosenzweig C. 2016. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nature Climate Change, 6, 786-790.

van Dijk M, Morley T, Rau M L, Saghai Y. 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nature Food, 2, 494-501.

Ding Z, Ali E F, Elmahdy A M, Ragab K E, Seleiman M F, Kheir A M S. 2021. Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agricultural Water Management, 244, 106626.

Evans L T. 1996. Crop Evolution, Adaptation and Yield. Cambridge University Press.

FAO (Food and Agriculture Organization of the United Nations). 2023. FAOSTAT-agriculture database. [2023-11-21]. http://faostat.fao.org/

Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, et al. 2011. Solutions for a cultivated planet. Nature, 478, 337-342.

Godwin D, Ritchie J, Singh U, Hunt L. 1990. A User’s Guide to CERES-Wheat v2.1. 2nd ed. International Fertilizer Development Center, Muscle Shoals, AL.

Guarin J R, Martre P, Ewert F, Webber H, Dueri S, Calderini D, Reynolds M, Molero G, Miralles D, Garcia G, Slafer G, Giunta F, Pequeno D N L, Stella T, Ahmed M, Alderman P D, Basso B, Berger A G, Bindi M, Bracho-Mujica G, et al. 2022. Evidence for increasing global wheat yield potential. Environmental Research Letters, 17, 124045.

Gupta N, Singh Y, Jat H S, Singh L K, Choudhary K M, Sidhu H S, Gathala M K, Jat M L. 2023. Precise irrigation water and nitrogen management improve water and nitrogen use efficiencies under conservation agriculture in the maize-wheat systems. Scientific Report, 13, 12060.

He J, Cai H, Bai J. 2013. Irrigation scheduling based on CERES-Wheat model for spring wheat production in the Minqin Oasis in Northwest China. Agricultural Water Management128, 19-31.

He J, Dukes M D, Jones J W, Graham W D, Judge J. 2009. Applying GLUE for estimating CERES-Maize genetic and soil parameters for sweet corn production. Transaction on ASABE52, 1907–1921.

He J, Jones J W, Graham W D, Dukes M D. 2010. Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agricultural Systems103, 256-264.

van Ittersum M K, Rabbinge R. 1997. Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crops Research, 52, 197-208.

Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J, Ritchie J T. 2003. The DSSAT cropping system model. European Journal of Agronomy, 18, 235-265.

Ju H, van der V M, Lin E, Xiong W, Li Y. 2013. The impacts of climate change on agricultural production systems in China. Climatic Change, 120, 313-324.

Kimball B A, Pinter P J, Garcia R L, LaMorte R L, Wall G W, Hunsaker D J, Wechsung G, Wechsung F, Kartschall T. 1995. Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biology, 1, 429–442.

Kiniry J R, Bonhomme R. 1991. Predicting crop phenology. In: Hodges T, ed.,. RC Press. pp. 115-131. 

Kruijt B, Witte J P M, Jacobs C M J, Kroon T. 2008. Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: A practical approach for the Netherlands. Journal of Hydrology, 349, 257–267.

Lesk C, Coffel E, Winter J, Ray D, Zscheischler J, Seneviratne S I, Horton R. 2021. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nature Food, 2, 683-691.

Li E, Zhao J, Pullens J W M, Yang X. 2022. The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China. Science of the Total Environment, 81, 152461.

Li K N, Yang X G, Liu Z J, Zhang T Y, Lu S, Liu Y. 2014. Low yield gap of winter wheat in the North China Plain. European Journal of Agronomy, 59, 1-12.

Li Q, Bian C, Liu X, Ma C, Liu Q. 2015. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain. Agricultural Water Management, 153, 71-76.

Li Q, Yin J, Liu W, Zhou S, Li L, Niu J, Niu H, Ma Y. 2012. Determination of optimum growing degree-days (GDD) range before winter for wheat cultivars with different growth characteristics in North China Plain. Journal of Integrative Agriculture, 11, 405-415.

Liu X, Sun H, Feike T, Zhang X, Shao L, Chen S. 2016. Assessing the impact of air pollution on grain yield of winter wheat - A case study in the North China Plain. PLoS ONE, 11, e162655.

Liu Y, Wang E, Yang X, Wang J. 2010. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Global Change Biology, 16, 2287-2299.

Lobell D B, Bänziger M, Magorokosho C, Vivek B. 2011. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1, 42-45.

Lobell D B, Burke M B, Tebaldi C, Mastrandrea M D, Falcon W P, Naylor R L. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science, 319, 607-610.

Lu C, Fan L. 2013. Winter wheat yield potentials and yield gaps in the North China Plain. Field Crops Research143, 98-105.

Lu D, Lu F, Yan P, Cui Z, Chen X. 2014. Elucidating population establishment associated with N management and cultivars for wheat production in China. Field Crops Research, 163, 81-89.

Lu D J. 2015. Dynamics of populations trait for high yielding and high efficiency winter wheat and N nutrient regulation in the North China Plain. Ph D thesis, China Agricultural University, China(in Chinese)

Meng Q, Liu B, Yang H, Chen X. 2020. Solar dimming decreased maize yield potential on the North China Plain. Food and Energy Security, 9, e235

Meng Q, Sun Q, Chen X, Cui Z, Yue S, Zhang F, Römheld V. 2012. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agriculture, Ecosystems & Environment, 146, 93-102.

Morales A, Villalobos F J. 2023. Using machine learning for crop yield prediction in the past or the future. Frontiers in Plant Science, 14, 1128388.

Palosuo T, Kersebaum K C, Angulo C, Hlavinka P, Moriondo M, Olesen J E, Patil R H, Ruget F, Rumbaur C, Takáč J, Trnka M, Bindi M, Çaldağ B, Ewert F, Ferrise R, Mirschel W, Şaylan L, Aiška B, Rötter R. 2011. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy, 35, 103-114.

Qiao L, Wang X, Smith P, Fan J, Lu Y, Emmett B, Li R, Dorling S, Chen H, Liu S, Benton T G, Wang Y, Ma Y, Jiang R, Zhang F, Piao S, Mϋller C, Yang H, Hao Y, Li W, et al. 2022. Soil quality both increases crop production and improves resilience to climate change. Nature Climate Change, 12, 574-580.

Qu C, Li X, Ju H, Liu Q. 2019. The impacts of climate change on wheat yield in the Huang-Huai-Hai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios. Journal of Integrative Agriculture, 18, 1379-1391.

Rashid M A, Jabloun M, Andersen M N, Zhang X Y, Olesen J E. 2019. Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain. Agricultural Water Management, 222, 193–203.

Reynolds M P, Quilligan E, Aggarwal P K, Bansal K C, Cavalieri A J, Chapman S C, Chapotin S M, Datta S K, Duveiller E, Gill K S, Jagadish K S V, Joshi A K, Koehler A, Kosina P, Krishnan S, Lafitte R, Mahala R S, Muthurajan R, Paterson A H, Prasanna B M, et al. 2016. An integrated approach to maintaining cereal productivity under climate change. Global Food Security, 8, 9-18.

Ritchie J T. 1998. Soil water balance and plant water stress. In: Tsuji G Y, Hoogenboom G, Thornton P K, eds., Understanding Options for Agricultural Production. Kluwer Academic, Dordrecht, The Netherlands. pp. 41–54.

Ritchie J T, Godwin D C. 1989. Description of soil balance. In: Virnami S M, Tandon H L S, Alagarswamy G, eds., Modeling the Growth and Development of Sorghum and Pearl Millet. Research Bulletin 12. ICRISAT, Pradesh, India. pp. 14–16.

Ritchie J T, Godwin D C, Otter-Nacke S. 1988. CERES-Wheat: A Simulation Model of Wheat Growth and Development. Texas A&M Univ Press, College Station.

Ritchie J T, Otter S. 1985. Description and Performance of CERES-Wheat: A User Oriented Wheat Yield Model. ARS Wheat Yield Project. ARS-38. Natl. Tech. Inf. Serv, Springfield, VA. pp. 159–175.

Ritchie J T, Singh U, Godwin D C, Bowen W T. 1998. Cereal growth development and yield. In: Tsuji Y G, Hoogenboom G, Thornton P K, eds., Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht. pp. 79–98.

Shoukat M R, Cai D, Shafeeque M, Habib-Ur-Rahman M, Yan H. 2022. Warming climate and elevated CO2 will enhance future winter wheat yields in North China Region. Atmosphere, 13, 1275.

Sun H, Zhang X, Chen S, Pei D, Liu C. 2007. Effects of harvest and sowing time on the performance of the rotation of winter wheat–summer maize in the North China Plain. Industrial Crops and Products, 25, 239-247.

Sun Q, Kröbel R, Müller T, Römheld V, Cui Z, Zhang F, Chen X. 2011. Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain. Agricultural Water Management, 98, 808-814.

Tie X, Huang R, Dai W, Cao J, Long X, Su X, Zhao S, Wang Q, Li G. 2016. Effect of heavy haze and aerosol pollution on rice and wheat productions in China. Scientific Reports6, 29612.

Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. 2006. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agricultural and Forest Meteorology, 138, 82-92.

Tao F, Zhang Z. 2013. Climate change, wheat productivity and water use in the North China Plain: A new super-ensemble-based probabilistic projection. Agricultural and Forest Meteorology, 170, 146-165.

Tao F, Zhang Z, Zhang S, Zhu Z, Shi W. 2012. Response of crop yields to climate trends since 1980 in China. Climate Research, 54, 233-247.

Toreti A, Deryng D, Tubiello F N, Müller C, Kimball B A, Moser G, Boote K, Asseng S, Pugh T A M, Vanuytrecht E, Pleijel H, Webber H, Durand J, Dentener F, Ceglar A, Wang X, Badeck F, Lecerf R, Wall G W, van den Berg M, et al. 2020. Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 1, 775-782.

Wang J, Wang E, Yang X, Zhang F, Yin H. 2012. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change, 113, 825-840.

Wu D, Yu Q, Lu C, Hengsdijk H. 2006. Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy24, 226-235.

Xiao D, Liu D L, Wang B, Feng P, Bai H, Tang, J. 2020. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agricultural Water Management, 238, 106238.

Xiao L, Wang G, Wang E, Liu S, Chang J, Zhang P, Zhou H, Wei Y, Zhang H, Zhu Y, Shi Z, Luo Z. 2024. Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production. Nature Food, 5, 59-71.

Xiong W, Holman I, Lin E, Conway D, Li Y, Wu W. 2012. Untangling relative contributions of recent climate and CO2 trends to national cereal production in China. Environmental Research Letters, 7, 44014.

Yang P, Wu W, Li Z, Yu Q, Inatsu M, Liu Z, Tang P, Zha Y, Kimoto M, Tang H. 2014. Simulated impact of elevated CO2, temperature, and precipitation on the winter wheat yield in the North China Plain. Regional Environmental Change, 14, 61-74.

Ye T, Liu B, Wang X, Zhou J, Liu L, Tang L, Cao W, Zhu Y. 2022. Effects of water-nitrogen interactions on the fate of nitrogen fertilizer in a wheat-soil system. European Journal of Agronomy, 136, 126507.

Yu S L, Yu Z W, Dong Q Y, Wang D, Zhang Y L, Yao D C, Wang J Q. 2010. Winter wheat high-yield culture technique of 789.9 kg per mu. Shandong Agricultural Sciences, 4, 11–12. (in Chinese)

Zhang B, Li X, Chen H, Niu W, Kong X, Yu Q, Zhao M, Xia X. 2022. Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity. Land Use Policy, 117, 106080.

Zhao C, Liu B, Piao S, Wang X, Lobell D B, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand J, Elliott J, Ewert F, Janssens I A, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114, 9326-9331.

Zhou L, Chen X, Tian X. 2018. The impact of fine particulate matter (PM2.5) on China’s agricultural production from 2001 to 2010. Journal of Cleaner Production, 178, 133-141.

No related articles found!
No Suggested Reading articles found!