Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Reconstructed organic rice fields: Effects on soil organic carbon, total nitrogen, their mineralization, and rice yield in Japanese Andosols

Valensi Kautsar1, 2, Takamori Kanno3, 4, Kaho Sakai3, Riza Kurnia Sabri3, 5, Keitaro Tawaraya3, Kazunobu Toriyama3, 6, Kazuhiko Kobayashi7, Weiguo Cheng1, 3

1 The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan

2 Faculty of Agriculture, Stiper Agricultural University, Yogyakarta 55283, Indonesia

3 Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan

4 Fukushima Prefecture Soso Agriculture and Forestry Office, Tomioka, Fukushima 975-0031, Japan

5 Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

6 Japan International Research Center for Agricultural Sciences, Tsukuba 305-8686, Japan

7 Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan

 Highlights 

l Terrace land reconstruction significantly influenced rice yields between opposing sides of the newly established fields.
l Soil organic carbon, total nitrogen, and their decomposition dynamics underwent modifications due to land reconstruction, specifically in the 15–30 cm subsurface soil layer.
l The fertility of soil extending to a depth of 30 cm served as a crucial determinant of rice productivity following reconstruction.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

To examine the impact of anthropogenic land reconstruction, particularly the consolidation of small terraces into larger fields, on soil organic carbon (SOC), total nitrogen (TN) dynamics, rice yield, and its components, soil and plant samples were collected from seven newly reconstructed fields in Japanese Andosols in Tochigi, Japan. Samples were obtained from both the former low- and high-elevation sides within each field plot. During harvest season, nine rice plants were randomly selected from each plot (0.675 m2, comprising 3 rows and 3 hills per row), collected from a 3-meter stretch along both the east (former low side) and west (former high side) ridges. Soil cores were collected from identical plots at two depths (0–15 and 15–30 cm) and combined into one composite sample per layer. Rice plant samples were air-dried for two weeks until reaching constant moisture content, after which stems and ears were separated and weighed to determine biomass, yield, yield components, and nitrogen uptake. The indicated that land reconstruction significantly affected rice yield and its components between the two sides of all field plots. SOC, TN, and their decomposition following land reconstruction showed notable changes, especially in the 15–30 cm subsurface soil layer. Additionally, grain weight demonstrated significant correlation with SOC, TN, and carbon decomposition in both the 0–15 cm and 15–30 cm layers, indicating that soil fertility to a depth of 30 cm was crucial for rice productivity after land reconstruction.

Keywords:  Japanese Andosols       different soil layers       organic rice farming       reconstructed fields       rice yield  
Online: 07 July 2025  
Fund: 

This study was partly supported by the Yamagata University YU-COE(S) program and by the Advanced Agri-food System Research Center of Yamagata University, Japan. This research was financially supported by a Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (26310304) and Yamagata University YU-COE(S) program and by the Advanced Agri-food System Research Center of Yamagata University, Japan.

About author:  #Correspondence Weiguo Cheng, E-mail: cheng@tds1.tr.yamagata-u.ac.jp

Cite this article: 

Valensi Kautsar, Takamori Kanno, Kaho Sakai, Riza Kurnia Sabri, Keitaro Tawaraya, Kazunobu Toriyama, Kazuhiko Kobayashi, Weiguo Cheng. 2025. Reconstructed organic rice fields: Effects on soil organic carbon, total nitrogen, their mineralization, and rice yield in Japanese Andosols. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.007

Amano Y. 1985. Classification of cultivated soils and its use in Japan. In: Asian and Pacific Council. Food & Fertilizer Technology Center, eds., Soil Taxonomy: Review and Use in the Asian and Pacific Region. Food and Fertilizer Technology Center for the Asian and Pacific Region, Taipei. pp. 75–87.

Batjes N H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science47, 151–163. 

Bell M J, Worrall F, Smith P, Bhogal A, Black H, Lilly A, Barraclough D, Merrington G. 2011. UK land-use change and its impact on SOC: 1925–2007. Global Biogeochemical Cycles, 25, GB4015. 

Blanco-Canqui H, Lal R, Owens L B, Post W M, Izaurralde R C. 2005. Mechanical properties and organic carbon of soil aggregates in the Northern Appalachians. Soil Science Society of America Journal69, 1472–1481. 

Cheng W, Padre A T, Sato C, Shiono H, Hattori S, Kajihara A, Aoyama M, Tawaraya K, Kumagai K. 2016. Changes in the soil C and N contents, C decomposition and N mineralization potentials in a rice paddy after long-term application of inorganic fertilizers and organic matter. Soil Science and Plant Nutrition, 62, 212–219.

Cheng W, Sakai H, Yagi K, Hasegawa T. 2009. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology149, 5158. 

Cheng W, Yagi K, Akiyama H, Nishimura S, Sudo S, Fumoto T, Hasegawa T, Hartley A E, Megonigal J P. 2007. An empirical model of soil chemical properties that regulate methane production in Japanese rice paddy soils. Journal of Environmental Quality, 36, 1920–1925.

Deng L, Liu G B, Shangguan Z P. 2014. Land-use conversion and changing soil carbon stocks in China's ‘Grain-for-Green’ program: A synthesis. Global Change Biology, 20, 3544–3556. 

Dexter A R. 1997. Physical properties of tilled soils. Soil and Tillage Research, 43, 41–63.

Eshaghi Rad J, Valadi G, Salehzadeh O, Maroofi H. 2018. Effects of anthropogenic disturbance on plant composition, plant diversity and soil properties in oak forests, Iran. Journal of Forest Science, 64, 358–370.

FAO (Food and Agriculture Organization of the United Nations). 2024. FAOSTAT database. [2025-05-02]. http://faostat.fao.org/

Franzluebbers A J, Haney R L, Honeycutt C W, Schomberg H H, Hons F M. 2000. Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Science Society of America Journal64, 613–623.

Grosse G, Harden J, Turetsky M, McGuire A D, Camill P, Tarnocai C, Frolking S, Schuur E A, Jorgenson T, Marchenko S, Romanovsky V, Wickland K P, French N, Waldrop M, Bourgeau-Chavez L, Striegl R G. 2011. Vulnerability of high-latitude soil organic carbon in North America to disturbance. Journal of Geophysical Research (Biogeosciences), 116, G00K06. 

Hillel D, Rosenzweig C. 2009. Soil carbon and climate change: Carbon exchange in the terrestrial domain and the role of agriculture. CSA News, 54, 5–11.

Kautsar V, Cheng W, Tawaraya K, Hattori S, Yamada S, Kobayashi K, Toriyama K. 2020a. Air-drying and drying-rewetting effects in Japanese Andosols subjected to long-term organic rice farming. Soil Science and Plant Nutrition, 66, 714–723.

Kautsar V, Cheng W, Tawaraya K, Yamada S, Toriyama K, Kobayashi K. 2020b. Carbon and nitrogen stocks and their mineralization potentials are higher under organic than conventional farming practices in Japanese Andosols. Soil Science and Plant Nutrition, 66, 144–151.

Kautsar V, Tang S, Kimani S M, Tawaraya K, Wu J, Toriyama K, Kobayashi K, Cheng W. 2022. Carbon decomposition and nitrogen mineralization of foxtail and milk vetch incorporated into paddy soils for different durations of organic farming. Soil Science and Plant Nutrition, 68, 158–166.

Kurniawan A H, Sato S, Cheng W, Dewi P K, Kobayashi K. 2021. Animal abundance and soil properties affected by long-term organic farming in rice paddies in a typical Japanese Yatsuda landscape. Environmental Monitoring and Assessment, 193 (Suppl 1), 273.

Lado-Monserrat L, Lull C, Bautista I, Lidón A, Herrera R. 2014. Soil moisture increment as a controlling variable of the “Birch Effect”. Interactions with the pre-wetting soil moisture and litter addition. Plant and Soil, 379, 21–34.

Lal R. 2020. Soil organic matter content and crop yield. Journal of Soil and Water Conservation, 75, 27A–32A.

Miyazawa M, Takahashi T, Sato T, Kanno H, Nanzyo M. 2013. Factors controlling accumulation and decomposition of organic carbon in humus horizons of Andosols. Biology and Fertility of Soils, 49, 929–938. 

Mohanty M, Painuli D K, Misra A K, Ghosh P K. 2007. Soil quality effects of tillage and residue under rice–wheat cropping on a Vertisol in India. Soil and Tillage Research, 92, 243–250. 

Nanzyo M. 2002. Unique properties of volcanic ssh Soils. Global Environmental Research-English Edition, 6, 99–112.

Oldfield E E, Bradford M A, Wood S A. 2019. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 5, 15–32. 

Peng W, Zeng Y, Shi Q, Huang S. 2017. Responses of rice yield and the fate ofertilizer nitrogen to soil organic carbon. Plant, Soil and Environment, 63, 416–421. 

Peterson B L, Hanna L, Steiner J T. 2019. Reduced soil disturbance: Positive effects on greenhouse gas efflux and soil n losses in winter wheat systems of the southern plains. Soil and Tillage Research, 191, 317–326. 

Shirato Y, Hakamata T, Taniyama I. 2004. Modified Rothamsted carbon model for Andosols and its validation: Changing humus decomposition rate constant with pyrophosphate-extractable Al. Soil Science and Plant Nutrition, 50, 149–158. 

Shoji S, Ando H, Wada G. 1986. Fate of nitrogen in paddy fields and nitrogen absorption by rice plants. Japan Agricultural Research Quarterly, 20, 127–134.

Siavoshi M, Nasiri A, Laware S L. 2011. Effect of organic fertilizer on growth and yield components in rice (Oryza sativa L.). Journal of Agricultural Science, 3, 217–294.

Steinmann H H. 2002. Impact of harrowing on the nitrogen dynamics of plants and soil. Soil and Tillage Research, 65, 53–59. 

Takahashi T, Shoji S. 2002. Distribution and classification of volcanic ash soils. Global Environmental Research-English Edition, 6, 83–98.

Takakai F, Kominami Y, Ohno S, Nagata O. 2020. Effect of the long-term application of organic matter on soil carbon accumulation and GHG emissions from a rice paddy field in a cool-temperate region, Japan- I. Comparison of rice straw and rice straw compost. Soil Science and Plant Nutrition, 66, 84–95.

Tanaka A, Toriyama K, Kobayashi K. 2012. Nitrogen supply via internal nutrient cycling of residues and weeds in lowland rice farming. Field Crops Research, 137, 251–260.

Toriyama K, Sekiya S, Miyamori Y. 1988. Quantification of effect of air-drying of paddy soil before submergence on amount of nitrogen mineralization. Japanese Journal of Soil Science and Plant Nutrition, 59, 531–537. (in Japanese)

Wada K, Higashi T. 1976. The categories of aluminium- and iron- humus complexes in Ando soils determined by selective dissolution. European Journal of Soil Science, 27, 357368.

[1] Mengyan Cao, Shaoping Ye, Cheng Jin, Junkang Cheng, Yao Xiang, Yu Song, Guorong Xin, Chuntao He. The communities of arbuscular mycorrhizal fungi established by different winter green manures in paddy fields promote post-cropping rice production[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1588-1605.
[2] Yongjian Chen, Lan Dai, Siren Cheng, Yong Ren, Huizi Deng, Xinyi Wang, Yuzhan Li, Xiangru Tang, Zaiman Wang, Zhaowen Mo.

Regulation of 2-acetyl-1-pyrroline and grain quality in early-season indica fragrant rice by nitrogen and silicon fertilization under different plantation methods [J]. >Journal of Integrative Agriculture, 2024, 23(2): 511-535.

[3] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[4] Christian Adler PHARES, Selorm AKABA. Co-application of compost or inorganic NPK fertilizer with biochar influenced soil quality, grain yield and net income of rice[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3600-3610.
[5] Muhammad Amjad BASHIR, ZHAI Li-mei, WANG Hong-yuan, LIU Jian, Qurat-Ul-Ain RAZA, GENG Yu-cong, Abdur REHIM, LIU Hong-bin. Apparent variations in nitrogen runoff and its uptake in paddy rice under straw incorporation[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3356-3367.
[6] ZHOU Nian-bing, ZHANG jun, FANG Shu-liang, WEI Hai-yan, ZHANG Hong-cheng. Effects of temperature and solar radiation on yield of good eating-quality rice in the lower reaches of the Huai River Basin, China[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1762-1774.
[7] WANG Yue-chao, LI Xiu-fen, Lee Tarpley, PENG Shao-bing, DOU Fu-gen. Effects of nitrogen management on the ratoon crop yield and head rice yield in South USA[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1457-1464.
[8] WU Qiong, WANG Yu-hui, DING Yan-feng, TAO Wei-ke, GAO Shen, LI Quan-xin, LI Wei-wei, LIU Zheng-hui, LI Gang-hua. Effects of different types of slow- and controlled-release fertilizers on rice yield[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1503-1514.
[9] GUO Xiao-hong*, LAN Yu-chen*, XU Ling-qi, YIN Da-wei, LI Hong-yu, QIAN Yong-de, ZHENG Gui-ping, LÜ Yan-dong. Effects of nitrogen application rate and hill density on rice yield and nitrogen utilization in sodic saline–alkaline paddy fields[J]. >Journal of Integrative Agriculture, 2021, 20(2): 540-553.
[10] ZHOU Xing, LU Yan-hong, LIAO Yu-lin, ZHU Qi-dong, CHENG Hui-dan, NIE Xin, CAO Wei-dong, NIE Jun. Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2381-1392.
[11] CUI Yue-feng, MENG Jun, WANG Qing-xiang, ZHANG Wei-ming, CHENG Xiao-yi, CHEN Wen-fu. Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China[J]. >Journal of Integrative Agriculture, 2017, 16(05): 1064-1074.
[12] CHEN Zhong-du, ZHANG Hai-lin, S Batsile Dikgwatlhe, XUE Jian-fu, QIU Kang-cheng, TANG Hai-ming, CHEN fu. Soil carbon storage and stratification under different tillage/ residue-management practices in double rice cropping system[J]. >Journal of Integrative Agriculture, 2015, 14(8): 1551-1560.
[13] LI Yan, CHEN Yi, WU Chun-yan, TANG Xu, JI Xiao-jiang. Determination of optimum nitrogen application rates in Zhejiang Province, China, based on rice yields and ecological security[J]. >Journal of Integrative Agriculture, 2015, 14(12): 2426-2433.
[14] CHEN Chao, ZHOU Guang-sheng , ZHOU Li. Impacts of Climate Change on Rice Yield in China From 1961 to 2010 Based on Provincial Data[J]. >Journal of Integrative Agriculture, 2014, 13(7): 1555-1564.
[15] JIANG Li-ben, ZHU Zhan-fei, GE Lin-quan, YANG Guo-qing, WU Jin-cai. Rice Grain Damage by Combination and Sequence Infestations by the Rice Leaffolder, Cnaphalocrocis medinalis Guenee (Lepidoptera: Pyralidae), and the White-Backed Rice Planthopper, Sogatella furcifera Horváth (Hemiptera: Delphacidae)[J]. >Journal of Integrative Agriculture, 2014, 13(11): 2460-2470.
No Suggested Reading articles found!