Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3598-3613    DOI: 10.1016/j.jia.2024.05.002
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV

Minghui Li1, 2, 3, 4, 5, Yilan Chen2, 5, Siqiao Wang2, 4, 5, Xueke Sun2, 4, 5, Yongkun Du2, 4, Siyuan Liu2, 4, 5, Ruiqi Li2, 5, Zejie Chang2, 5, Peiyang Ding3#, Gaiping Zhang1, 2, 3, 4, 5#

1 School of Advanced Agricultural Sciences, Peking University, Beijing 100080, China

2 Longhu Laboratory, Zhengzhou 450046, China

3 College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China

4 College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China

5 Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

 Highlights 
● Nanoparticle-based COE protein elicited enhanced antigen uptake by APCs and cross-presentation.
● Nanoparticle-based COE protein induced potent neutralizing antibody responses in mice.
● COE-mi3 VLPs elicited potent GC B cell responses.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
目的:猪流行性腹泻病毒(PEDV)是引起猪流行性腹泻(PED)的病原体,是肠道冠状病毒的典型代表。病毒感染的有效控制取决于疫苗的不断发展。为了开发一种更新、更安全、更有效的抗PEDV亚单位疫苗,我们通过在纳米颗粒表面展示抗原来增强疫苗的免疫原性和效力。方法:利用SpyTag/SpyCatcher系统,将PEDV的核心表位结构域(COE)显示在正二十面体的mi3纳米支架上,使其自组装成含60个亚基的病毒样颗粒COE-mi3 VLPs。研究了COE-mi3 VLPs的大小、Zeta电位、微观结构和细胞毒性,并分析了它们对抗原呈递细胞摄取、抗原留存效应和树突状细胞成熟的影响。对小鼠分别进行肌肉和鼻内免疫,并分析COE-mi3 VLPs诱导的体液免疫、细胞免疫和黏膜免疫应答水平。结果:利用SpyTag/SpyCatcher的异肽键偶联效应,成功将COE展示在mi3纳米颗粒上,组装成分布均匀的COE-mi3 VLPs,并且具有良好的安全性和稳定性。COE-mi3 VLPs可以更有效地被抗原呈递细胞摄取并长久地驻留在动物体内,有助于促进树突状细胞表面标志物的表达,从而促进树突状细胞的成熟和激活。此外,COE-mi3 VLPs在小鼠模型中不仅显著改善了PEDV特异性抗体水平,还能引起更多的CD4+和CD8+ T细胞的活化和IFN-γ和IL-4细胞因子的产生。值得注意的是,COE-mi3 VLPs可以显著促进生发中心B细胞的免疫应答,对中和抗体的产生具有重要意义。此外,COE-mi3 VLPs可以通过鼻内免疫改善小鼠肠黏膜的免疫应答。结论:基于纳米颗粒多价展示的COE-mi3 VLPs可显著增强机体的体液和细胞免疫应答,通过鼻内免疫还可以提高肠道黏膜免疫水平,并且显著改善PEDV特异性中和抗体水平。综上所述,基于纳米颗粒的PEDV抗原展示具有很大的发展潜力,可以作为一种新的亚单位疫苗平台,也可能为其他肠道冠状病毒疫苗的开发提供新的思路。


Abstract  

Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is widely spread worldwide and causes huge economic losses.  The effective measure to control the viral infection is to develop ideal vaccines.  Here, the collagenase equivalent domain (COE) of PEDV was displayed on the surface of nanoparticles (NPs) in order to develop a newer, safer and more effective subunit vaccine against PEDV.  The monomeric COE was displayed on the mi3 protein, which self-assembles into nanoparticles composed of 60 subunits, using the SpyTag/SpyCatcher system.  The size, zeta potential, microstructure of the COE-mi3 virus-like particles (VLPs) were investigated.  The COE-mi3 VLPs that possessed good security, stability and better retention can be more efficiently taken up by antigen-presenting cells (APCs) and help promote dendritic cells (DCs) maturation.  Moreover, COE-mi3 VLPs could prominently improve specific antibody levels including neutralizing antibodies (NAbs), and serum IgG, mucosal IgA.  Moreover, COE-mi3 VLPs elicited more activation of CD4+ and CD8+ T cells and production of IFN-γ and IL-4 cytokines.  In particular, COE-mi3 VLPs is an effectual antigen-delivery platform to enhance germinal center (GC) B cell responses.  This structure-based self-assembly of NP gives great potential to be developed as a new subunit vaccines attractive platform, and may also provide new ideas for the development of other enteric coronavirus vaccines.

Keywords:  PEDV        nanoparticle multimerization        mucosal immunization        germinal center  
Received: 30 October 2023   Online: 13 May 2024   Accepted: 07 April 2024
Fund: This work was supported by the Major Scientific and Technological Project of the Henan Province (221100110600), Beijing Life Science Academy(BLSA)(2024500CA0010), Major Program of National Natural Science Foundation of China (32192452), Chinese Postdoctoral Science Foundation (2023M743209).
About author:  Minghui Li, E-mail: liminghui95925@163.com; #Correspondence Gaiping Zhang, Tel: +86-371-65723268, E-mail: zhanggaip@126.com; Peiyang Ding, Tel: +86-371-67739345, E-mail: dingpeiyang1990@163.com

Cite this article: 

Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. 2025. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV. Journal of Integrative Agriculture, 24(9): 3598-3613.

Annamalai T, Saif L J, Lu Z, Jung K. 2015. Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs. Veterinary Immunology & Immunopathology, 168, 193–202.

Bruun T, Andersson A C, Draper S J, Howarth M. 2018. Engineering a rugged nanoscaffold to enhance Plug-and-Display vaccination. ACS Nano12, 8855–8866.

Chang S H, Bae J L, Kang T J, Kim J, Chung G H, Lim C W, Laude H, Yang M S, Jang Y S. 2002. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Molecules and Cells14, 295–299.

Charlton H H, Lua L. 2017. Platform technologies for modern vaccine manufacturing. Vaccine35, 4480–4485.

Chattha K S, Roth J A, Saif L J. 2015. Strategies for design and application of enteric viral vaccines. Annual Review of Animal Biosciences3, 375.

Chen G, Bai Y, Li Z, Wang F, Fan X, Zhou X. 2020. Bacterial extracellular vesicle-coated multi-antigenic nanovaccines protect against drug-resistant Staphylococcus aureus infection by modulating antigen processing and presentation pathways. Theranostics10, 7131–7149.

Dhakal S, Renukaradhya G J. 2019. Nanoparticle-based vaccine development and evaluation against viral infections in pigs. Veterinary Research, 50, 90.

Dummer L A, Araujo I L, Finger P F, Dos S A J, Da R M, Conceicao F R, Fischer G, van Drunen L D H S, Leite F P. 2014. Immune responses of mice against recombinant bovine herpesvirus 5 glycoprotein D. Vaccine32, 2413–2419.

Edayati A K, Chua C L L, Smooker P, Lee K W. 2019. Nanoparticles in influenza subunit vaccine development: Immunogenicity enhancement. Influenza and Other Respiratory Viruses14, 92–101.

Graham B S, Gilman M, Mclellan J S. 2019. Structure-based vaccine antigen design. Annual Review of Medicine70, 91–104.

Guo T, Gao C, Hao J, Lu X, Xie K, Wang X, Li J, Zhou H, Cui W, Shan Z, Jiang Y, Qiao X, Tang L, Wang L, Li Y. 2022. Strategy of developing oral vaccine candidates against co-infection of porcine diarrhea viruses based on a lactobacillus delivery system. Frontiers in Microbiology13, 872550.

Havenar-Daughton C, Lee J H, Crotty S. 2017. Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem. Immunological Reviews275, 49–61.

Holmgren J, Czerkinsky C. 2005. Mucosal immunity and vaccines. Nature Medicine11, S45–S53.

Hsia Y, Bale J B, Gonen S, Shi D, Sheffler W, Fong K K, Nattermann U, Xu C, Huang P S, Ravichandran R, Yi S, Davis T N, Gonen T, King N P, Baker D. 2016. Corrigendum: Design of a hyperstable 60-subunit protein icosahedron. Nature540, 150.

Hu C J, Chang W S, Fang Z S, Chen Y T, Wang W L, Tsai H H, Chueh L L, Takano T, Hohdatsu T, Chen H W. 2017. Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus. Scientific Reports7, 13043.

Jung K, Saif L J. 2021. Replication of porcine deltacoronavirus is limited in the gastrointestinal tract of neonatal piglets co-infected simultaneously or 16 hours prior with virulent porcine epidemic diarrhea virus. Veterinary Microbiology261, 109206.

Kayraklioglu N, Horuluoglu B, Klinman D M. 2021. CpG oligonucleotides as vaccine adjuvants. Methods in Molecular Biology2197, 51–85.

Kheirollahpour M, Mehrabi M, Dounighi N M, Mohammadi M, Masoudi A. 2020. Nanoparticles and vaccine development. Pharmaceutical Nanotechnology8, 6–21.

Kwong P D. 2017. What are the most powerful immunogen design vaccine strategies? A structural biologist’s perspective. Cold Spring Harbor Perspectives in Biology9, a029470.

Lederer K, Castano D, Gomez A D, Oguin T R, Wang S, Manzoni T B, Muramatsu H, Hogan M J, Amanat F, Cherubin P, Lundgreen K A, Tam Y K, Fan S, Eisenlohr L C, Maillard I, Weissman D, Bates P, Krammer F, Sempowski G D, Pardi N, et al. 2020. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity53, 1281–1295.

Li L, Fu F, Guo S, Wang H, He X, Xue M, Yin L, Feng L, Liu P. 2019. Porcine intestinal enteroids: A new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response. Journal of Virology93, e01682–18.

Li Y, Wang G, Wang J, Man K, Yang Q. 2017. Cell attenuated porcine epidemic diarrhea virus strain Zhejiang08 provides effective immune protection attributed to dendritic cell stimulation. Vaccine35, 7033–7041.

Li Y, Wu Q, Huang L, Yuan C, Wang J, Yang Q. 2018. An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine. Nature Communications9, 3811.

Li Z, Ma Z, Li Y, Gao S, Xiao S. 2020. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microbial Pathogenesis149, 104553.

Lin Y, Sun B, Jin Z, Zhao K. 2022. Enhanced immune responses to mucosa by functionalized chitosan-based composite nanoparticles as a vaccine adjuvant for intranasal delivery. ACS Applied Materials & Interfaces14, 52691–52701.

Ma X, Zou F, Yu F, Li R, Yuan Y, Zhang Y, Zhang X, Deng J, Chen T, Song Z, Qiao Y, Zhan Y, Liu J, Zhang J, Zhang X, Peng Z, Li Y, Lin Y, Liang L, Wang G, et al. 2020. Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity53, 1315–1330.

Mohankrishnan A, Patel H, Bhurani V, Parmar R, Yadav N, Dave N, Rana S, Gupta S, Madariya J, Vyas P. 2019. Inclusion of non-target antigen in vaccination favors generation of OVA specific CD4 memory T cells. Cellular Immunology337, 1–14.

Mota R M, Moreira J L, Souza M R, Horta M F, Teixeira S M, Neumann E, Nicoli J R, Nunes A C. 2006. Genetic transformation of novel isolates of chicken Lactobacillus bearing probiotic features for expression of heterologous proteins: A tool to develop live oral vaccines. BMC Biotechnology6, 2.

Negandaripour M N N S. 2017. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biological Control (Theory and Application in Pest Management), 111, 575–596.

Oh J, Lee K W, Choi H W, Lee C. 2014. Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Archives of Virology, 159, 2977–2987.

Okda F A, Lawson S, Singrey A, Nelson J, Hain K S, Joshi L R, Christopher-Hennings J, Nelson E A, Diel D G. 2017. The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes. Virology509, 185–194.

Poles J, Alvarez Y, Hioe C E. 2014. Induction of intestinal immunity by mucosal vaccines as a means of controlling HIV infection. AIDS Research and Human Retroviruses30, 1027–1040.

Rahikainen R, Rijal P, Tan T K, Wu H J, Andersson A C, Barrett J R, Bowden T A, Draper S J, Townsend A R, Howarth M. 2021. Overcoming symmetry mismatch in vaccine nanoassembly through spontaneous amidation. Angewandte Chemie International Edition60, 321–330.

Song D, Huang D, Peng Q, Huang T, Chen Y, Zhang T, Nie X, He H, Wang P, Liu Q, Tang Y. 2015. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea viruses associated with outbreaks of severe diarrhea in piglets in Jiangxi, China 2013. PLoS ONE10, e120310.

Staats H F, Montgomery S P, Palker T J. 1997. Intranasal immunization is superior to vaginal, gastric, or rectal immunization for the induction of systemic and mucosal anti-HIV antibody responses. Aids Research and Human Retroviruses13, 945–952.

Steinman R M. 2001. Dendritic cells and the control of immunity: Enhancing the efficiency of antigen presentation. Mount Sinai Journal of Medicine68, 160–166.

Steinrigl A, Fernandez S R, Stoiber F, Pikalo J, Sattler T, Schmoll F. 2015. First detection, clinical presentation and phylogenetic characterization of porcine epidemic diarrhea virus in Austria. BMC Veterinary Research11, 310.

Tao W, Hurst B L, Shakya A K, Uddin M J, Ingrole R S, Hernandez-Sanabria M, Arya R P, Bimler L, Paust S, Tarbet E B, Gill H S, et al. 2017. Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses. Antiviral Research141, 62–72.

Tizard I R. 2020. Vaccination against coronaviruses in domestic animals. Vaccine38, 5123–5130.

Turlewicz-Podbielska H, Pomorska-Mol M. 2021. Porcine coronaviruses: Overview of the state of the art. Virologica Sinica36, 833–851.

Wang J, Huang L, Mou C, Zhang E, Wang Y, Cao Y, Yang Q. 2019a. Mucosal immune responses induced by oral administration recombinant Bacillus subtilis expressing the COE antigen of PEDV in newborn piglets. Bioscience Reports39, BSR20182028.

Wang Q, Vlasova A N, Kenney S P, Saif L J. 2019b. Emerging and re-emerging coronaviruses in pigs. Current Opinion in Virology34, 39–49.

Wang Y P, Liu D, Guo L J, Tang Q H, Wei Y W, Wu H L, Liu J B, Li S B, Huang L P, Liu C M. 2013. Enhanced protective immune response to PCV2 subunit vaccine by co-administration of recombinant porcine IFN-gamma in mice. Vaccine31, 833–838.

Won H, Lim J, Noh Y H, Yoon I, Yoo H S. 2020. Efficacy of porcine epidemic diarrhea vaccines: A systematic review and Meta-Analysis. Vaccines (Basel), 8, 642.

Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. 2022. Swine enteric coronavirus: Diverse Pathogen-Host interactions. International Journal of Molecular Sciences, 23, 3953.

Zakeri B, Fierer J O, Celik E, Chittock E C, Schwarz-Linek U, Moy V T, Howarth M. 2012. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proceedings of the National Academy of Sciences of the United States of America109, E690–E697.

Zhang B, Chao C W, Tsybovsky Y, Abiona O M, Hutchinson G B, Moliva J I, Olia A S, Pegu A, Phung E, Stewart-Jones G, Verardi R, Wang L, Wang S, Werner A, Yang E S, Yap C, Zhou T, Mascola J R, Sullivan N J, Graham B S, et al. 2020. A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Scientific Reports10, 18149.

Zhang E, Wang J, Li Y, Huang L, Wang Y, Yang Q. 2020. Comparison of oral and nasal immunization with inactivated porcine epidemic diarrhea virus on intestinal immunity in piglets. Experimental and Therapeutic Medicine20, 1596–1606.

Zhang H, Zou C, Peng O, Ashraf U, Xu Q, Gong L, Fan B, Zhang Y, Xu Z, Xue C, Wei X, Zhou Q, Tian X, Shen H, Li B, Zhang X, Cao Y. 2023. Global dynamics of porcine enteric coronavirus PEDV epidemiology, evolution, and transmission. Molecular Biology and Evolution40, msad052.

Zhou P, Fan H, Lan T, Yang X L, Shi W F, Zhang W, Zhu Y, Zhang Y W, Xie Q M, Mani S, Zheng X S, Li B, Li J M, Guo H, Pei G Q, An X P, Chen J W, Zhou L, Mai K J, Wu Z X, et al. 2018. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature556, 255–258.

No related articles found!
No Suggested Reading articles found!