Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Development of a smart device android-based decision support system for controlling non-point source nitrogen and phosphorus pollution in an agricultural catchment

Meihui Wang1, 3*, Wenqian Jiang2*, Yuxi Fu2*, Yi Wang4, Xinliang Liu2, Jianlin Shen2, Feng Liu2, Yong Li1#

1 State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2 Key Laboratory of Agro-ecological Processes in Subtropical Regions/Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

3 Key Laboratory of Environment Change and Resources Use in Beibu Gulf of Ministry of Education, Nanning Normal University, Nanning 530001, China

4 College of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, China

 Highlights 

l A smart device android-based DSS (CNPDSS) is proposed for controlling non-point source N & P pollution.

l The CNPDSS integrates GIS, a Bayesian-based model for predicting N & P loadings, an optimization algorithm, and an interactive interface for smartphones.

l Identified optimal solutions simultaneously minimize N & P loadings and engineering costs.

l Main features of the CNPDSS are tested through its application in the sub-tropical Tuojia catchment, Hunan Province, Central China.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

制定农业面源氮(N)磷(P)污染的防控策略常常具有挑战性,需要在工程成本与处理效果之间寻找平衡,一旦防控策略失衡往往会导致治理农业流域面源污染时出现不理想的治理后果或高昂的技术成本。针对这一问题,本文开发了一种可行的便携式流域N&P决策支持系统(CNPDSS),该系统基于安卓智能手机平台,并集成了Web地理信息系统(GIS)和流域氮磷污染防控评估系统。CNPDSS旨在通过人工智能驱动的优化算法来制定氮磷流失负荷控制目标,并控制防控工程成本。该系统由四个主要组件构成:用户界面(GUI)、GIS模块N&P污染模型(NPPM)和决策支持系统(DSS)。该系统的用户界面简洁,并集成了GIS模块,提供了直观的交互体验,适合非专业人员使用。CNPDSS采用简洁的经验模型来预测氮磷负荷,提高了预测效率并减少了参数复杂度;同时综合考虑了流域内氮、磷迁移路径和三种控制措施(农田源头减量、生态沟渠过程截留及末端湿地净化处理),形成了全面的“三元”面源氮磷防控体系。为了优化子流域中的任一N&P污染防控方案,提高其成本效益比,CNPDSS采用差分进化算法(DEA)执行双目标决策优化计算。本研究应用CNPDSS在我国中部某一典型农业小流域进行了案例开发应用,证实了CNPDSS可以通过制定了一套优化且高效的氮磷污染控制策略,确保该流域水质达到国标III类水的标准(GB3838-2002TN浓度≤ 1.0 mg/L TP≤ 0.2 mg/L)。该案列也表明CNPDSS具备自适应设计和灵活架构,可以支撑其在其它流域中的广泛应用。



Abstract  

Intervention strategies to control non-point source nitrogen (N) and phosphorus (P) pollution in agriculture are expensive and there is a trade-off between engineering cost and treatment effectiveness. Implementing strategies often result in unsatisfactory outcomes and massive engineering costs when managing diffusive pollution in agricultural catchments. To address this issue, this paper proposes a robust, handy, catchment N & P decision support system (CNPDSS), an Android-based smartphone system integrated with a web-based Geographic Information System (GIS). The CNPDSS aims to provide artificial intelligence-driven decisions that minimize N & P loadings and engineering costs for mitigating pollution in agricultural catchments. It consists of four components: a general user interface (GUI), GIS, N & P pollution modeling (NPPM), and a DSS. The CNPDSS simplifies the GUI and integrates GIS modules to create a user-friendly interface, enabling non-professional users to operate the system easily through intuitive actions. The NPPM uses straightforward empirical models to predict N & P loadings, enhancing efficiency by avoiding excessive parameters. Taking into account the N & P movement pathway in the catchment, the DSS incorporates three control measures: source reduction in farmland (before migration stage), process retention by ecological ditch (midway transport stage), and down-end purification by constructed wetland (waterbody discharge stage), to formulate a comprehensive ternary controlling strategy. To optimize the cost-effectiveness of any proposed N & P control strategies for sub-catchments, a differential evolution algorithm (DEA) is employed in CNPDSS to carry out a dual-objective decision-making optimization computation. In this study, the CNPDSS is applied to a case study in an agricultural catchment in central China to develop the most cost-effective ternary N & P control strategies that ensure the catchment water quality within Criterion III of the Chinese Surface Water Quality Standard GB3838-2002 is met (total N concentration≤1.0 mg L−1 and total P concentration≤0.2 mg L−1). Our results demonstrate that the CNPDSS is feasible and also possesses an adaptive design and flexible architecture to enable its generalization and extension to support strong hands-on applications in other catchments.

Keywords:  decision support system              non-point source N &      P pollution              a ternary controlling strategy              dual-objective optimization              agricultural catchment  
Online: 27 March 2025  
Fund: 

This study was financially supported by the National Key Research and Development Program of China (2024YFD1700104), the National Natural Science Foundation of China (42161144002, 41977156), the Guangxi Natural Science Foundation, China (2022GXNSFBA035625), the Guangxi Technology Base and Talent Subject, China (Guike AD22035927), the National Key Research and Development Programs of China (2022YFE0209200-03), the Shandong Key Research and Development Project (2022TZXD0045), and the State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences. 

About author:  Meihui Wang, Mobile: +86-18076550069, E-mail: mhwang@nnnu.edu.cn; #Correspondence Yong Li, Mobile: +86-13107488562, E-mail: yli@mail.iap.ac.cn

Cite this article: 

Meihui Wang, Wenqian Jiang, Yuxi Fu, Yi Wang, Xinliang Liu, Jianlin Shen, Feng Liu, Yong Li. 2025. Development of a smart device android-based decision support system for controlling non-point source nitrogen and phosphorus pollution in an agricultural catchment. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.03.023

Aschonitis V G, Mastrocicco M, Colombani N, Salemi E, Kazakis N, Voudouris K, Castaldelli G. 2011. Assessment of the intrinsic vulnerability of agricultural land to water and nitrogen losses via deterministic approach and regression analysis. Water, Air, & Soil Pollution, 223, 1605-1614.

Bai X Y, Shen W, Wang P, Chen X H, He Y H. 2020. Response of non-point source pollution loads to land use change under different precipitation scenarios from a future perspective. Water Resources Management, 34, 3987-4002.

Bilal, Pant M, Zaheer H, Garcia-Hernandez L, Abraham A. 2020. Differential evolution: A review of more than two decades of research. Engineering Applications of Artificial Intelligence, 90, 103479.

Bojorquez-Tapia L A, Sanchez-Colon S, Florez A. 2005. Building consensus in environmental impact assessment through multicriteria modeling and sensitivity analysis. Environmental Management, 36, 469-481.

Bouraoui F, Braud I, Dillaha T A. 2002. ANSWERS: A nonpoint source pollution model for water, sediment and nutrient losses. In: Mathematical Models of Small Watershed Hydrology and Applications. Water Resources Publication, Colorado. pp. 833-882.

Broad S T, Corkrey R. 2011. Estimating annual generation rates of total P and total N for different land uses in Tasmania, Australia. Journal of Environmental Management, 92, 1609-1617.

Bryan B A, Kandulu J M. 2010. Designing a policy mix and sequence for mitigating agricultural non-point source pollution in a water supply catchment. Water Resources Management, 25, 875-892.

Charles A, Parks G. 2019. Application of differential evolution algorithms to multi-objective optimization problems in mixed-oxide fuel assembly design. Annals of Nuclear Energy, 127, 165-177.

Chichakly K J, Bowden W B, Eppstein M J. 2013. Minimization of cost, sediment load, and sensitivity to climate change in a watershed management application. Environmental Modelling & Software, 50, 158-168.

Chilundo M, Joel A, Wesström I, Brito R, Messing I. 2018. Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil. Agricultural Water Management, 199, 120-137.

Chu T W, Adel S, Cheng L Y, Huang Y C. 2013. BMP evaluation for nutrient control in a subtropical reservoir watershed using SWAT model. In: 2013 the International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2013). Atlantis Press, Washington D.C., USA. pp. 912-915.

Courtney J F. 2001. Decision making and knowledge management in inquiring organizations: Toward a new decision-making paradigm for DSS. Decision Support Systems, 31, 17-38.

Díaz F J, O'Geen A T, Dahlgren R A. 2012. Agricultural pollutant removal by constructed wetlands: Implications for water management and design. Agricultural Water Management, 104, 171-183.

Ding N, Tao F L, Chen Y. 2022. Effects of climate change, crop planting structure, and agricultural management on runoff, sediment, nitrogen and phosphorus losses in the Hai-River Basin since the 1980s. Journal of Cleaner Production, 359, 132066.

EPB (Enviromental Protection Bureau). 2002. Environmental Quality Standards for Surface Water. Enviromental Protection Bureau, Beijing. (in Chinese)

Fan L C, Yuan Y M, Ying Z C, Lam S K, Liu L, Zhang X C, Liu H B, Gu B J. 2019. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environmental Science and Pollution Research, 26, 464-472.

Fu X Q, Chen P, Qi Z M, Xiao R l, Yang J Z. 2011. Effects of shading on eco-environment and leaf gas exchange of tea in hilly tea plantation. Chinese Agricultural Science Bulletin, 27, 40-46 (in Chinese).

Gurarslan G, Karahan H. 2015. Solving inverse problems of groundwater-pollution-source identification using a differential evolution algorithm. Hydrogeology Journal, 23, 1109-1119.

Hajkowicz S A. 2008. Supporting multi-stakeholder environmental decisions. Journal of Environmental Management88, 607-614.

Hesse C, Krysanova V, Päzolt J, Hattermann F F. 2008. Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling, 218, 135-148.

Hoos A B, McMahon G. 2009. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks. Hydrological Processes, 23, 2275-2294.

Janssen R. 2001. On the use of multi-criteria analysis in environmental impact assessment in the Netherlands. Journal of Multi-Criteria Decision Analysis, 10, 101-109.

Karavitis C A, Tsesmelis D E, Oikonomou P D, Kairis O, Kosmas C, Fassouli V, Ritsema C, Hessel R, Jetten V, Moustakas N, Todorovic B, Skondras N A, Vasilakou C G, Alexandris S, Kolokytha E, Stamatakos D V, Stricevic R, Chatzigeorgiadis E, Brandt J, Geeson N, et al. 2020. A desertification risk assessment decision support tool (DRAST). Catena, 187, 104413.

Khoshnevisan B, Rafiee S, Pan J T, Zhang Y T, Liu H B. 2020. A multi-criteria evolutionary-based algorithm as a regional scale decision support system to optimize nitrogen consumption rate: A case study in North China plain. Journal of Cleaner Production, 256, 120213.

Kochilakis G, Poursanidis D, Chrysoulakis N, Varella V, Kotroni V, Eftychidis G, Lagouvardos K, Papathanasiou C, Karavokyros G, Aivazoglou M, Makropoulos C, Mimikou M. 2016. FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas. Open Geosciences, 8, 711-727.

Kolli M K, Opp C, Karthe D, Kumar N M. 2022. Web-based decision support system for managing the food-water-soil-ecosystem nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India. Sustainability, 14, 2044.

Li H Q, Liu L M, Ji X. 2015. Modeling the relationship between landscape characteristics and water quality in a typical highly intensive agricultural small watershed, Dongting lake basin, south central China. Environmental Monitoring and Assessment, 187, 1-12. 

Li H Q, Zhao Y Y, Zheng F. 2020. The framework of an agricultural land-use decision support system based on ecological environmental constraints. Science of the Total Environment, 717, 137149.

Liao Z L, Xu Z X, Wang D B, Lu S Q, Hannam P M. 2011. River environmental decision support system development for Suzhou Creek in Shanghai. Journal of Environmental Management, 92, 2211-2221.

Liu J, Liu X L, Wang Y, Li Y, Jiang Y X, Wang M H, Wu J S. 2020a. Landscape pattern at the class level regulates the stream water nitrogen and phosphorus levels in a Chinese subtropical agricultural catchment. Agriculture, Ecosystems & Environment, 295, 106897. 

Liu J, Ouyang X Q, Shen J L, Li Y, Sun W R, Jiang W Q, Wu J S. 2020b. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Science of the Total Environment, 715, 136852.

Liu X L, Wang Y, Li Y, Wang M H, Liu J, Yin L M, Zuo S M, Wu J S. 2020. Riverine nitrogen export and its natural and anthropogenic determinants in a subtropical agricultural catchment. Agriculture, Ecosystems & Environment, 301, 107021.

Maringanti C, Chaubey I, Arabi M, Engel B. 2011. Application of a multi-objective optimization method to provide least cost alternatives for NPS pollution control. Environmental Management, 48, 448-461.

McIntosh B S, Ascough J C, Twery M, Chew J, Elmahdi A, Haase D, Harou J J, Hepting D, Cuddy S, Jakeman A J, Chen S, Kassahun A, Lautenbach S, Matthews K, Merritt W, Quinn N W T, Rodriguez-Roda I, Sieber S, Stavenga M, Sulis A, et al. 2011. Environmental decision support systems (EDSS) development-Challenges and best practices. Environmental Modelling & Software, 26, 1389-1402.

Meng C, Liu H Y, Wang Y, Shen J L, Liu F, Xia Y Q, Li Y Y, Wu J S. 2023. Landscape pattern exhibits threshold-driven effect on nitrogen export of typical land use in subtropical hilly watershed under specific hydrological regimes. Journal of Cleaner Production, 419, 138322.

Meng C. 2019. Spatio-temporal variation of net anthropogenic nitrogen/phosphorus input and environmental effects in a small typical subtropical watershed. Ph D thesis, Chinese Academy of Sciences, Hunan, China (in Chinese).

Monte L, Brittain J E, Gallego E, Håkanson L, Hofman D, Jiménez A. 2009. MOIRA-PLUS: A decision support system for the management of complex fresh water ecosystems contaminated by radionuclides and heavy metals. Computers & Geosciences, 35, 880-896.

Müller-Wohlfeil D I, Jørgensen J O, Kronvang B, Wiggers L. 2002. Linked catchment and scenario analysis of nitrogen leaching and loading: A case-study from a Danish catchment-fjord system, Mariager Fjord. Physics and Chemistry of the Earth27, 691-699.

Mamedov A I, Bar-Yosef B, Levkovich I, Fine P, Silber A, Levy G J. 2020. Physicochemical mechanisms underlying soil and organic amendment effects on runoff P losses. Land Degradation & Development, 31, 2395-2404.

Navarro-Hellín H, Martínez-del-Rincon J, Domingo-Miguel R, Soto-Valles F, Torres-Sánchez R. 2016. A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121-131.

Newman J P, Maier H R, Riddell G A, Zecchin A C, Daniell J E, Schaefer A M, van Delden H, Khazai B, O'Flaherty M J, Newland C P. 2017. Review of literature on decision support systems for natural hazard risk reduction: Current status and future research directions. Environmental Modelling & Software, 96, 378-409.

Nsenga Kumwimba M, Meng F, Iseyemi O, Moore M T, Zhu B, Tao W, Liang T J, Ilunga L. 2018. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions. Science of the Total Environment, 639, 742-759.

Pierobon E, Castaldelli G, Mantovani S, Vincenzi F, Fano E A. 2013. Nitrogen removal in vegetated and unvegetated drainage ditches impacted by diffuse and point sources of pollution. CLEAN-Soil, Air, Water, 41, 24-31.

Qi D L, Wu Q X, Zhu J Q. 2020. Nitrogen and phosphorus losses from paddy fields and the yield of rice with different water and nitrogen management practices. Scientific Reports, 10, 9734.

Reddy M J, Kumar D N. 2007. Evolving strategies for crop planning and operation of irrigation reservoir system using multi-objective differential evolution. Irrigation Science, 26, 177-190.

Rose D C, Sutherland W J, Parker C, Lobley M, Winter M, Morris C, Twining S, Ffoulkes C, Amano T, Dicks L V. 2016. Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, 149, 165-174.

Shen J L, Liu J Y, Li Y, Li Y Y, Wang Y, Liu X J, Wu J S. 2014. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China. Journal of Environmental Sciences, 26, 1797-1805. 

Storn R, Price K. 1996. Minimizing the real functions of the ICEC'96 contest by differential evolution. In: Proceedings of IEEE International Conference on Evolutionary Computation. Nagoya, Japan. pp. 842-844.

Tu M C, Smith P. 2018. Modeling pollutant buildup and washoff parameters for SWMM based on land use in a semiarid urban watershed. Water, Air, & Soil Pollution, 229, 1-15.

Udias A, Pastori M, Dondeynaz C, Moreno C C, Ali A, Cattaneo L, Cano J. 2018. A decision support tool to enhance agricultural growth in the Mékrou river basin (West Africa). Computers and Electronics in Agriculture, 154, 467-481.

Vasan A, Raju K S. 2006. Application of differential evolution for irrigation planning: An Indian case study. Water Resources Management, 21, 1393-1407.

Vasan A, Simonovic S P. 2010. Optimization of water distribution network design using differential evolution. Journal of Water Resources Planning and Management, 136, 279-287.

Vymazal J. 2014. Constructed wetlands for treatment of industrial wastewaters: A review. Ecological Engineering, 73, 724-751.

Walling E, Vaneeckhaute C. 2020. Developing successful environmental decision support systems: Challenges and best practices. Journal of Environmental Management, 264, 110513.

Wang J L, Lu J Z, Zhang Z, Han X X, Zhang C, Chen X L. 2022. Agricultural non-point sources and their effects on chlorophyll-a in a eutrophic lake over three decades (1985-2020). Environmental Science and Pollution Research, 29, 46634-46648. 

Wang M H, Wang Y, Li Y, Liu X L, Liu J, Wu J S. 2020. Natural and anthropogenic determinants of riverine phosphorus concentration and loading variability in subtropical agricultural catchments. Agriculture, Ecosystems & Environment, 287, 106713.

Wang S H, Wang Y Q, Wang Y J, Wang Z. 2022. Comparison of multi-objective evolutionary algorithms applied to watershed management problem. Journal of Environmental Management, 324, 116255. 

Wang Y, Montas H J, Brubaker K L, Leisnham P T, Shirmohammadi A, Chanse V, Rockler A K. 2017. A diagnostic decision support system for BMP selection in small urban watershed. Water Resources Management, 31, 1649-1664.

Wu M, Tang X Q, Li Q Y, Yang W J, Jin F, Tang M Z, Scholz M. 2013. Review of ecological engineering solutions for rural non-point source water pollution control in Hubei Province, China. Water, Air, & Soil Pollution, 224, 1-18.

Xue L H, Hou P F, Zhang Z Y, Shen M X, Liu F X, Yang L Z. 2020. Application of systematic strategy for agricultural non-point source pollution control in Yangtze River basin, China. Agriculture, Ecosystems & Environment, 304, 107148.

Xia Y F, Zhang M, Tsang D C W, Geng N, Lu D B, Zhu L F, Igalavithana A D, Dissanayake P D, Rinklebe J, Yang X, Ok Y S. 2020. Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: Current practices and future prospects. Applied Biological Chemistry, 63, 1-13.

Xu H W, Windsor M, Muste M, Demir I. 2020. A web-based decision support system for collaborative mitigation of multiple water-related hazards using serious gaming. Journal of Environmental Management, 255, 109887.

Yang L Z, Wu Y H. 2018. Prevention and control of agricultural non-point source pollution and aquatic environmental protection. Bulletin of Chinese Academy of Sciences, 33, 168-176. (in Chinese)

Zeng Y, Cai Y P, Jia P, Jee H. 2012. Development of a web-based decision support system for supporting integrated water resources management in Daegu city, South Korea. Expert Systems with Applications, 39, 10091-10102.

Zhai Z Y, Martínez J F, Beltran V, Martínez N L. 2020. Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170, 105256.

Zhang L, Lu W X, Hou G L, Gao H Y, Liu H Q, Zheng Y N. 2019. Coupled analysis on land use, landscape pattern and nonpoint source pollution loads in Shitoukoumen Reservoir watershed, China. Sustainable Cities and Society, 51, 101788. 

Zhang T, Yang Y H, Ni J P, Xie D T, Nicholson F. 2019. Best management practices for agricultural non-point source pollution in a small watershed based on the AnnAGNPS model. Soil Use and Management36, 45-57.

No related articles found!
No Suggested Reading articles found!