Abolore A A, Amara C, Shakeel A, Wang Y, Shu Y, Li S, Li X, Babatunde K, Sani M, Tong X, Zhang J. 2020. Protein phosphorylation and phosphoproteome: An overview of rice. Rice Science, 27, 184–200.
Clark H H. 1967. The origin and early history of the cultivated barleys: A botanical and archaeological synthesis. The Agricultural History Review, 15, 1–18.
Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R. 2011. Genetic dissection of barley morphology and development. Plant Physiology, 155, 617–627.
Edler D, Klein J, Antonelli A, Silvestro D. 2020. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution, 12, 373–377.
Flavell R B. 2022. A framework for improving wheat spike development and yield based on the master regulatory TOR and SnRK gene systems. Journal of Experimental Botany, 74, 755–768.
Geng L, Li M D, Zhang G P, Ye L Z. 2022. Barley: A potential cereal for producing healthy and functional foods. Food Quality and Safety, 6, fyac012.
Guo A, He C, Bi S, Zhou Z, Liu A, Hu X, Liu Y, Jin L, Zhou J, Zhang H, Du D, Chen H, Gong X, Saeed S, Su H, Lan C, Chen W, Li Q, Mao H, Li L, et al. 2024. Dissecting the molecular basis of spike traits by integrating gene regulatory network and genetic variation in wheat. Plant Communications, 5, 100879.
Habgood R M, Chambi J Y. 1984. Effects of the deficiens allele on ear development and yield in barley. Annals of Applied Biology, 105, 159–166.
Helback H. 1959. Domestication of food plants in the old world: Joint efforts by botanists and archeologists illuminate the obscure history of plant domestication. Science, 130, 365–372.
Jayakodi M, Lu Q, Pidon H, Rabanus-Wallace M T, Bayer M, Lux T, Guo Y, Jaegle B, Badea A, Bekele W, Brar G S, Braune K, Bunk B, Chalmers K J, Chapman B, Jørgensen M E, Feng J W, Feser M, Fiebig A, Gundlach H, et al. 2024. Structural variation in the pangenome of wild and domesticated barley. Nature, 636, 654–662.
Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T M, Kamal N, Lang D, Himmelbach A, Ens J, Zhang X, Angessa T T, Zhou G, Tan C, Hill C B, Wang P, Schreiber M, Boston L B, Plott C, et al. 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 588, 284–289.
Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M. 2007. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 104, 1424–1429.
Langridge P. 2018. Economic and academic importance of barley. The Barley Genome, Chapter, 1-10. Springer, Cham, Switzerland.
Lin H, Jiang X, Qian C, Zhang Y, Meng X, Liu N, Li L, Wang J, Ju Y. 2024. Genome-wide identification, characterization, and expression analysis of the HD-Zip gene family in lagerstroemia for regulating plant height. Genes, 15, 428.
Liu Y, Wang W, Zhang L, Zhu L F, Zhang X, He X. 2023. The HD-Zip transcription factor GhHB12 represses plant height by regulating the auxin signaling in cotton. Journal of Integrative Agriculture, 22, 2015–2024.
Lyu Y M, Ma S, Liu J K, Wang X X. 2022. A systematic review of highland barley: Ingredients, health functions and applications. Grain & Oil Science and Technology, 5, 35–43.
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S O, Wicker T, Radchuk V, Dockter C, Hedley P E, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X Q, Zhang Q, Barrero R A, Li L, Taudien S, Groth M, et al. 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature, 544, 427–433.
McKim S M, Koppolu R, Schnurbusch T. 2018. Barley inflorescence architecture. The Barley Genome, Chapter, 171-208. Springer, Cham, Switzerland.
Milner S G, Jost M, Taketa S, Mazón E R, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, König P, Schüler D, Sharma R, Pasam R K, Rutten T, Guo G, Xu D, Zhang J, Herren G, Müller T, Krattinger S G, et al. 2019. Genebank genomics highlights the diversity of a global barley collection. Nature Genetics, 51, 319–326.
Naithani S, Deng C H, Sahu S K, Jaiswal P. 2023. Exploring pan-genomes: An overview of resources and tools for unraveling structure, function, and evolution of crop genes and genomes. Biomolecules, 13, 1403.
Orabi J, Backes G, Wolday A, Yahyaoui A, Jahoor A. 2007. The horn of Africa as a centre of barley diversification and a potential domestication site. Theoretical and Applied Genetics, 114, 1117–1127.
Sakuma S, Lundqvist U, Kakei Y, Thirulogachandar V, Suzuki T, Hori K, Wu J, Tagiri A, Rutten T, Koppolu R, Shimada Y, Houston K, Thomas W T B, Waugh R, Schnurbusch T, Komatsuda T. 2017. Extreme suppression of lateral floret development by a single amino acid change in the VRS1 transcription factor. Plant Physiology, 175, 1720–1731.
Sakuma S, Schnurbusch T. 2020. Of floral fortune: tinkering with the grain yield potential of cereal crops. New Phytologist, 225, 1873–1882.
Sharif R, Xie C, Wang J, Cao Z, Zhang H, Chen P, Li Y. 2020. Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses. International Journal of Biological Macromolecules, 158, 502-520.
Valdés A E, Overnäs E, Johansson H, Rada-Iglesias A, Engström P. 2012. The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Molecular Biology, 80, 405–418.
Willcox G. 1998. Archaeobotanical evidence for the beginnings of agriculture in Southeast Asia. The origins of agriculture and crop domestication, Chapter, 25–38. ICARDA, Aleppo, Syria.
Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer A H, Schluepmann H, Liu C M, Ouwerkerk P B. 2012. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Molecular Biology, 80, 571–585.
Zhang X, Jia H, Li T, Wu J, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z, Chen C, Carver B F, Yan L. 2022. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 376, 180–183.
Zhou W, Malabanan P B, Abrigo E. 2014. OsHox4 regulates GA signaling by interacting with DELLA-like genes and GA oxidase genes in rice. Euphytica, 201, 97–107.
Zwirek M, Waugh R, McKim S M. 2019. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. New Phytologist, 221, 1950–1965.
|