Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice
Zichen Liu1, Liyan Shang1, Shuaijun Dai1, Jiayu Ye1, Tian Sheng1, Jun Deng1, Ke Liu1, Shah Fahad2, Xiaohai Tian1, Yunbo Zhang1, Liying Huang1#

1 MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province)/College of Agriculture, Yangtze University, Jingzhou 434025, China

2 Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  协调冠层内光照和氮素分布对提高水稻产量和资源利用效率至关重要。然而,有关种植密度和施氮量对水稻冠层光氮分布特性的影响及其与产量、光能利用效率(RUE)和氮素籽粒生产效率(NUEg)的关系研究较少。本研究以2个杂交稻品种为材料,在0 N1)、90 N2)和180 kg N ha-1N33个氮肥及22.2D1)和33.3 hills m-2 D22个种植密度处理下进行了2年的大田试验。与N3D1处理相比,N2D2处理的产量和NUEg分别提高了3.4%和4.4%。氮肥和密度及其二者互作效应均对冠层光衰减系数(KL)、冠层氮素衰减系数(KN)和冠层光氮匹配指数(KN/KL)影响显著。KN均随着施氮量或种植密度的增加而降低,与N1相比,N2和N3处理的KN分别降低了43.5%和58.8%,而D2处理的KN较D1降低了16.0 %。KL和KN/KL值在低氮处理下较高,但在高氮处理下较低,增加种植密度导致KL和KN/KL值降低。此外,与N3D1相比,N2D2处理具有较高的KL和KN,因此具有可比较的KN/KL。相关分析表明,KL与花前RUE呈显著负相关,而KN和KN/KL与NUEg呈显著正相关。因此,在减氮投入下增加种植密度可以通过调控冠层光照和氮素分布,在保障水稻产量的同时提高资源利用效率。

Abstract  Coordinating light and nitrogen (N) distribution within a canopy is crucial to improve rice yield and resource use efficiency.  However, little attention has been paid to light and N distribution in response to planting density and N rate, and its relationships with grain yield, radiation use efficiency (RUE), and N use efficiency for grain production (NUEg) in rice.  Here, a two-year field experiment was conducted with two hybrid varieties under three N levels, 0 (N1), 90 (N2) and 180 kg ha-1 (N3), and two planting densities, 22.2 (D1) and 33.3 hills m-2 (D2).  On average, a 3.4% higher yield and 4.4% higher NUEg were observed under N2D2 compared with N3D1.  The extinction coefficient for N (KN) and light (KL) and their ratio (KN/KL) at the heading stage were significantly affected by the N rate, planting density, and their interaction.  KN decreased with the increase of N input or planting density.  Compared with N1, KN decreased by 43.5 and 58.8% under N2 and N3, respectively, and KN under D2 decreased by 16.0% compared with D1.  Higher KL and KN/KL values were observed under a low N rate, while the opposite trend was shown under a high N rate.  Moreover, increasing planting density resulted in a decrease in KL and KN/KL values.  Compared with N3D1, N2D2 had higher KL and KN, and thus comparable KN/KL.  Correlation analysis further revealed that KL was negatively correlated with RUE, while KN and KN/KL were positively correlated with NUEg.  Therefore, increasing planting density under reduced N input could ensure rice yield while improving resource use efficiency via regulating canopy light and N distribution. 
Keywords:  canopy light and N distribution              nitrogen input              planting density              high yield and high efficiency              hybrid rice  
Online: 30 April 2024  
Fund: This work was supported by the National Natural Science Foundation of China (32001467). The authors thank AiMi Academic Services (www.aimieditor.com) for English language editing and review services.
About author:  Zichen Liu, E-mail: 13307185039@163.com; #Correspondence Liying Huang, E-mail: lyhuang8901@126.com

Cite this article: 

Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. 2024. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.04.006

Anten N P R, Schieving F, Werger M J A. 1995. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species. Oecologia, 101, 504-513.

Cheabu S, Panichawong N, Rattanametta P, Wasuri B, Kasemsap P, Arikit S, Vanavichit A, Malumpong C. 2019. Screening for spikelet fertility and validation of heat tolerance in a large rice mutant population. Rice Science, 26, 229-238.

Chen S, Yin M, Zheng X, Liu S W, Chu G, Xu C M, Wang D Y, Zhang X F. 2019. Effect of dense planting of hybrid rice on grain yield and solar radiation use in southeastern China. Agronomy Journal, 111, 1229-1238.

Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J Y, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, et al. 2014. Producing more grain with lower environmental costs. Nature, 514, 486-489.

Chong H T, Jiang Z Y, Shang L Y, Shang C, Deng J, Zhang Y B, Huang L Y. 2023. Dense Planting with reduced nitrogen input improves grain yield, protein quality, and resource use efficiency in hybrid rice. Journal of Plant Growth Regulation, 42, 960-972.

Dreccer M F, Van O M, Schapendonk A, Pot C S, Rabbinge R. 2000. Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy impact on canopy photosynthesis. Annals of Botany, 86, 821-831.

Fu Y Q, Zhong X H, Zeng J H, Liang K M, Pan J F, Xin Y F, Liu Y Z, Hu X Y, Peng B L, Chen R B, Hu R, Huang N R. 2021. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. Journal of Integrative Agriculture, 20, 565-580.

Gallagher J N, Biscoe R V. 1978. Radiation absorption, growth and yield of cereals. The Journal of Agricultural Science, 91, 47-60.

Gastal F, Lemaire G. 2002. N uptake and distribution in crops: An agronomical and ecophysiological perspective. Journal of Experimental Botany, 53, 789-799.

Gu J F, Chen Y, Zhang H, Li Z K, Zhou Q, Yu C, Kong X S, Liu L J, Wang Z Q, Yang J C. 2017. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Research, 206, 74-85.

Gu J F, Yin X Y, Stomph T J, Struik P C. 2014. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. Plant, Cell & Environment, 37, 22-34.

Guan X J, Chen J, Chen X M, Xie J, Deng G Q, Hu L Z, L Y, Qian Y F, Qiu C F, Peng C R. 2022. Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application. Journal of Integrative Agriculture, 21, 1278-1289.

Hikosaka K. 2005. Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover. Annals of Botany, 95, 521-533.

Hikosaka K. 2014. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant, Cell & Environment, 37, 2077-2085.

Hirose T, Werger M J A. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia, 72, 520-526.

Hirose T, Werger M J A, Pons T L, Van Rheenen J W A. 1988. Canopy structure and leaf nitrogen distribution in a stand of Lysimachia vulgaris L. as influenced by stand density. Oecologia, 77, 145-150.

Hou W F, Khan M R, Zhang J L, Lu J W, Ren T, Cong R H, Li X K. 2019. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agriculture Ecosystems & Environment, 269, 183-192.

Huang L Y, Li X X, Zhang Y B, Fahad S, Wang F. 2022. dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation. Journal of Integrative Agriculture, 21, 3185-3198.

Huang L Y, Sun F, Yuan S, Peng S B, Wang F. 2018. Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Research, 216, 150-157.

Huang L Y, Yang D S, Li X X, Peng S B, Wang F. 2019. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Research, 233, 49-58.

Huang M, Jiang L G, Xia B, Zou Y B, Ao H J. 2013. Yield gap analysis of super hybrid rice between two subtropical environments. Australian Journal of Crop Science, 7, 600-608.

Kull O. 2002. Acclimation of photosynthesis in canopies: Models and limitations. Oecologia, 133, 267-279.

Lafarge T A, Broad L J, Hammer G L. 2002. Tillering in grain sorghum over a wide range of population densities: Identification of a common hierarchy for tiller emergence, leaf area development and fertility. Annals of Botany, 90, 87-98.

Li H, Zhu Y M, Wang G F, Liu R R, Huang D, Song M M, Zhang Y H, Wang H, Wang Y C, Shao R X, Guo J M. 2024. Maize yield increased by matching canopy light and nitrogen distribution via controlled-release urea/urea adjustment. Field Crops Research, 308, 109284.

Li Y, Gao Y X, Xu X M, Shen Q R, Guo S W. 2009. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Journal of Experimental Botany, 60, 2351-2360.

Liu K, Yang R, Deng J, Huang L Y, Wei Z W, Ma G H, Tian X H, Zhang Y B. 2020. High radiation use efficiency improves yield in the recently developed elite hybrid rice Y-liangyou 900. Field Crops Research, 253, 107804.

Liu T, Pan Y H, Lu Z F, Ren T, Lu J W. 2020. Canopy light and nitrogen distribution are closely related to nitrogen allocation within leaves in Brassica napus L. Field Crops Research, 258, 107958.

Long S P, Zhu X G, Naidu S L, Ort D R. 2006. Can improvement in photosynthesis increase crop yields. Plant, Cell & Environment, 29, 315-330.

Lou G M, Bhat M A, Tan X, Wang Y Y, He Y Q. 2023. Research progress on the relationship between rice protein content and cooking and eating quality and its influencing factors. Seed Biology, 2, 16.

Monsi M, Saeki T. 2005. On the factor light in plant communities and its importance for matter production. Annals of Botany, 95, 549-567.

Moreau D, Allard V, Gaju O, Le Gouis J, Foulkes M J, Martre P. 2012. Acclimation of leaf nitrogen to vertical light gradient at anthesis in wheat is a whole-plant process that scales with the size of the canopy. Plant Physiology, 160, 1479-1490.

Ouyang W J, Yin, X Y, Yang J C, Struik P C. 2021. Roles of canopy architecture and nitrogen distribution in the better performance of an aerobic than a lowland rice cultivar under water deficit. Field Crops Research, 271, 108257.

Peng S B, Tang Q Y, Zou Y B. 2009. Current status and challenges of rice production in China. Plant Production Science, 12, 3-8.

Sánchez B, Rasmussen A, Porter J R. 2014. Temperatures and the growth and development of maize and rice: A review. Global Chang Biology, 20, 408-417.

Tian P Y, Liu J M, Zhao Y N, Huang Y F, Lian Y H, Wang Y, Ye Y L. 2022. Nitrogen rates and plant density interactions enhance radiation interception, yield, and nitrogen use efficiencies of maize. Frontiers in Plant Science, 13, 974714.

Tian X Y, Engel B A, Qian H Y, Hua E, Sun S K, Wang Y B. 2021. Will reaching the maximum achievable yield potential meet future global food demand? Journal of Cleaner Production, 294, 126285.

Wang F, Peng S B. 2017. Yield potential and nitrogen use efficiency of China's super rice. Journal of Integrative Agriculture, 16, 1000-1008.

Wang M, Zhou G Y, Gao J L, Yu X F, Sun J Y, Hu S B, Qing G E, Qu J W, Ma D L, Wang Z G. 2022. Distribution and matching characteristics of light and nitrogen in maize canopy of high-density tolerance varieties. Acta Agronomica Sinica, 48, 3179-3191. (in Chinese)

Wei J G, Chai Q, Yin W, Fan H, Guo Y, Hu F L, Fan Z L, Wang Q M. 2024. Grain yield and N uptake of maize in response to increase plant density under reduced water and nitrogen supply conditions. Journal of Integrative Agriculture, 23, 122-140.

Wu C, Cui K H, Wang W C, Li Q, Fahad S, Hu Q Q, Huang J L, Nie LX, Peng S B. 2016. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Scientific Reports, 6, 34978.

Xu R, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y, Chu G. 2023. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases. Acta Agronomica Sinica, 49, 1630-1642. (in Chinese)

Yang J C. 2015. Approaches to achieve high grain yield and high resource use efficiency in rice. Frontiers of Agricultural Science and Engineering, 2, 115-123.

Yin X Y, Laar H H. 2005. Crop Systems Dynamics: An Ecophysiological Simulation Model for Genotype-by-Environment Interactions. Wagningen Academic Publishers, Wageningen, The Netherlands.

Zhao C, Huang H, Qian Z H, Jiang H X, Liu G M, Xu K, Hu Y J, Dai Q G, Huo Z Y. 2021. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice. Journal of Integrative Agriculture, 20, 1487-1502.

Zhou C C, Huang Y C, Jia B Y, Wang S, Dou F G, Samonte S O P B, Chen K, Wang Y. 2019. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in Northeast China. Agronomy, 9, 555.

Zhou Q, Yuan R, Zhang W Y, Gu J F, Liu L J, Zhang H, Wang Z Q, Yang J C. 2023. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates. Journal of Integrative Agriculture, 22, 63-79.

Zhu H J, Wen T, Sun M W, Ali L, Sheteiwy M S, Wahab A, Tan W J, Wen C, He X E, Wang X H. 2023. Enhancing rice yield and nitrogen utilization efficiency through optimal planting density and reduced nitrogen rates. Agronomy, 13, 1387.

Zhu K Y, Yan J Q, Shen Y, Zhang W Y, Xu Y J, Wang Z Q, Yang J C. 2022. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study. Journal of Integrative Agriculture, 21, 947-963.

No related articles found!
No Suggested Reading articles found!