Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Optimal ethephon application strategies for enhancing lodging resistance and yield in maize under different irrigation and fertilisation regimes

Minglong Yu*, Mengfan Yang*, Mingwei Du, Yushi Zhang, Zhaohu Li, Mingcai Zhang#

Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China

 Highlights 

1. High dose ethephon compensates for the efficacy loss of conventional dose ethephon caused by drip fertigation in maize by prolonging the effect duration.

2. High dose ethephon compensates for drip fertigation-induced decline in basal internode quality in maize by modulating hormonal balance and ethylene evolution, thereby enhancing lodging resistance.

3.The optimal ethephon concentration is 270 mg L−1 under traditional water–fertiliser (TWF) with only pre-sowing irrigation, TWF with supplemental drip irrigations, and drip irrigation with water–fertiliser integration (DIWF) without plastic‑film mulching, whereas under DIWF with plastic‑film mulching, the optimal concentration increases to 540 mg L−1.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

乙烯利被广泛用于玉米生产以降低重心并增强抗倒伏性,但其功效受到特定地点灌溉施肥制度的强烈影响。本研究旨在探讨在两个生态区(吴桥[WQ]和拜城[BC])的两种不同管理制度传统水肥(TWF)和滴灌水肥一体化(DIWF)下,优化乙烯利施用浓度对玉米抗倒伏性和产量的影响。使用两个玉米杂交种(沃玉3 [WY3]和京农科728 [JNK728])和三种乙烯利浓度(0 mg L−1 [CK]270 mg L−1 [E270]540 mg L−1 [E540]),于20232024年在WQ以及2024年在BC进行了田间试验。与TWF_E270相比,DIWF_E270(滴灌水肥一体化下喷施270 mg L−1乙烯利)均使两个生态点的乙烯利效应期缩短了1.9天,导致穗位高增加,茎秆质量下降,倒伏率显著提高。然而,DIWF_E540表现出补偿效应—与DIWF_E270相比,其在WQBC的乙烯利效应期分别延长了3.6天和4.9天。延长乙烯利效应期通过增加乙烯释放并抑制赤霉素和生长素浓度来优化基部节间形态(降低长度、增加横截面积和质量密度)和质量(增加穿刺强度、断裂强度和木质素沉积),从而改善了植株的构型性状(降低了株高、穗位高、重心高和穗比)并显著降低倒伏率。然而,乙烯利对产量的影响因地点和管理制度而异。优化乙烯利施用策略实现了最高的生产力。在仅进行播前灌溉的TWF模式下,最优乙烯利浓度为270 mg L−1但会造成产量降低。对于有补充滴灌的TWF模式以及无覆膜DIWF模式,最优浓度仍为270 mg L−1产量分别增加3.9%4.3%。相比之下,在覆膜的DIWF模式下,最优乙烯利浓度为540 mg L−1,可实现6.5%的产量增加。这些结果表明,根据灌溉施肥制度调整乙烯利施用浓度可以优化增产与抗倒伏性之间的平衡,这突显了将化学调控策略与当地农艺措施相结合以实现玉米可持续生产的潜力。



Abstract  

Ethephon is widely applied in maize production to reduce centre of gravity and enhance lodging resistance; however, its efficacy is strongly influenced by site-specific irrigation and fertilisation regimes. In this study, we aimed to investigate the effects of optimised ethephon concentrations on lodging resistance and yield under two contrasting management systems—traditional water–fertiliser (TWF) and drip irrigation with water–fertiliser integration (DIWF)—across two ecological regions (Wuqiao [WQ] and Baicheng [BC]). Field experiments were conducted in 2023 and 2024 at WQ and in 2024 at BC, using two maize hybrids (Woyu 3 [WY3] and Jingnongke 728 [JNK728]) and three ethephon concentrations (0 mg L−1 [CK], 270 mg L−1 [E270], and 540 mg L−1 [E540]). DIWF_E270 (DIWF with 270 mg L−1 ethephon) shortened the effect duration by 1.9 d at both ecological sites, leading to increased ear height, reduced stalk quality, and significantly higher lodging rates compared with those in TWF_E270. However, DIWF_E540 exhibited a compensatory effect—prolonging the effect duration by 3.6 d in WQ and 4.9 d in BC compared with that in DIWF_E270. The prolonged effective duration of ethephon optimised basal internode morphology (decreased length, increased cross-sectional area, and greater mass density) and quality (increased rind penetration strength, breaking strength, and lignin deposition) by increasing ethylene evolution while suppressing gibberellin and auxin concentrations. These changes improved plant architecture traits (lower plant height, ear height, centre of gravity height, and ear ratio) and significantly reduced lodging rate. However, its effects on yield varied by site and regime. Optimizing ethephon application strategies achieved the highest productivity. Under TWF with only pre-sowing irrigation, the optimal ethephon concentration was 270 mg L−1, though it resulted in yield reduction. For TWF with supplemental drip irrigations and DIWF without plastic‑film mulching, the optimal concentration remained 270 mg L−1, increasing yields by 3.9 and by 4.3%, respectively. In contrast, under DIWF with plastic‑film mulching, the optimal ethephon concentration was 540 mg L−1, achieving a 6.5% yield increase. These findings suggest that adjusting ethephon concentrations to irrigation–fertilisation regimes optimise the balance between increased yield and lodging resistance, highlighting the potential of integrating chemical regulation strategies with local agronomic practices for sustainable maize production.

Keywords:  maize       ethephon       irrigation and fertilisation regimes       lodging rate       yield  
Online: 15 January 2026  
Fund: 

This work was financially supported by the Science and Technology Planning Projects of the Xinjiang Production and Construction Corps, China (2024AB030), the National Key Research and Development Program of China (2024YFD2301304), and the Beijing Municipal Science and Technology Commission Project, China (Z221100006422005). 

About author:  Minglong Yu, E-mail: 15776559827@163.com; #Corresponding author Mingcai Zhang, E-mail: zmc1214@163.com *These two authors contributed equally to this research.

Cite this article: 

Minglong Yu, Mengfan Yang, Mingwei Du, Yushi Zhang, Zhaohu Li, Mingcai Zhang. 2026. Optimal ethephon application strategies for enhancing lodging resistance and yield in maize under different irrigation and fertilisation regimes. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.022

Achard P, Vriezen W, Van Der Straeten D, Harberd N. 2003. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell, 15, 2816–2825.

Ahmad I, Batyrbek M, Ikram K, Ahmad S, Kamran M, Misbah, Khan R S, Hou F J, Han Q F. 2023. Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density. Journal of Integrative Agriculture, 22, 417–433.

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology, 54, 519–546.

Cheng Y, Zhang T B, Hu X L, Liu Z Y, Liang Q, Yan S H, Feng H, Siddique K H M. 2023. Drip fertigation triggered by soil matric potential reduces residual soil nitrate content and improves maize nitrogen uptake and yield stability in an arid area. European Journal of Agronomy, 150, 126932.

FAO (Food and Agriculture Organization of the United Nations). 2021. Food and agriculture organization of the united nations agriculture databases (FAO). [2024-12-10]. http://faostat.fao.org/

Geisler-Lee J, Caldwell C, Gallie D R. 2010. Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia. Journal of Experimental Botany, 61, 857–871.

Geng W J, Sun Z C, Ren B Z, Ren H, Zhao B, Liu P, Zhang J W. 2022. Spraying ethephon effectively increased canopy light transmittance of densely planted summer maize, thus achieving synergistic improvement in stalk lodging resistance and grain yield. Plants, 11, 2219.

Hattori Y, Nagai K, Furukawa S, Song X, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460, 1026–1030.

Huang G M, Liu Y R, Guo Y L, Peng C X, Tan W M, Zhang M C, Li Z H, Zhou Y Y, Duan L S. 2021. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type. Field Crops Research, 260, 107982.

Huang W N, Liu H K, Zhang H H, Chen Z, Guo Y D, Kang Y F. 2013. Ethylene-induced changes in lignification and cell wall-degrading enzymes in the roots of mungbean (Vigna radiata) sprouts. Plant Physiology and Biochemistry, 73, 412–419.

Huetsch B W, Schubert S. 2018. Maize harvest index and water use efficiency can be improved by inhibition of gibberellin biosynthesis. Journal of Agronomy and Crop Science, 204, 209–218.

Hutsch B W, Schubert S. 2021. Water-use efficiency of maize may be increased by the plant growth regulator paclobutrazol. Journal of Agronomy and Crop Science, 207, 521–534.

Jafari F, Wang B B, Wang H Y, Zou J J. 2024. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. Journal of Integrative Plant Biology, 66, 849–864.

Jiao S P, Hazebroek J P, Chamberlin M A, Perkins M, Sandhu A S, Gupta R, Simcox K D, Hong L Y, Prall A, Heetland L, Meeley R B, Multani D S. 2019. Chitinase-like1 plays a role in stalk tensile strength in maize. Plant Physiology, 181, 1127–1147.

Kamran M, Ahmad I, Wang H Q, Wu X R, Xu J, Liu T N, Ding R X, Han Q F. 2018a. Mepiquat chloride application increases lodging resistance of maize by enhancing stem physical strength and lignin biosynthesis. Field Crops Research, 224, 148–159.

Kamran M, Cui W W, Ahmad I, Meng X P, Zhang X D, Su W N, Chen J Z, Ahmad S K, Fahad S, Han Q F, Liu T N. 2018b. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regulation, 84, 317–332.

Kasele I N, Nyirenda F, Shanahan J F, Nielsen D C, Dandria R. 1994. Ethephon alters corn growth, water-use, and grain-yield under drought stress. Agronomy Journal, 86, 283–288.

Kong F L, Liu F, Li X L, Yin P J, Lan T Q, Feng D J, Song B, Lei E, Li Z, Wang X L, Yuan J C. 2024. Ecological factors regulate stalk lodging within dense planting maize. Field Crops Research, 317, 109529.

Liu S J, Pubu C, Li Y Q, Zhang Y R, Yang S S, Zhu Y Z, Chen L J, Zhang G X, Han J. 2024. Optimal N fertilizer management method for improving maize lodging resistance and yields by combining controlled-release urea and normal urea. European Journal of Agronomy, 156, 127159.

Liu X Q, Wang P, Zhan Y T, Wang Y, Yang Y, Li H, Dong X H. 2019. Effect of ethylene on starch biosynthesis during endosperm development in maize. Journal of Maize Science, 27, 54–61, 68. (in Chinese)

Luo Z S, Xu X L, Cai Z Z, Yan M. 2007. Effects of ethylene and 1-methylcyclopropene (1-MCP) on lignification of postharvest bamboo shoot. Food Chemistry, 105, 521–527.

Ma Q, Sun Q, Zhang X B, Li F J, Ding Y G, Tao R R, Zhu M, Ding J F, Li C Y, Guo W S, Zhu X K. 2022. Controlled-release nitrogen fertilizer management influences grain yield in winter wheat by regulating flag leaf senescence post-anthesis and grain filling. Food and Energy Security, 11, e361.

Meng Y, Tong T, Gu W R, Li J, Wei S. 2020. Nitrogen fertilization and planting density effects on the physiological characteristics of stem, root bleeding sap and lodging resistance in spring maize. International Journal of Agriculture and Biology, 23, 711–720.

Muday G K, Rahman A, Binder B M. 2012. Auxin and ethylene: Collaborators or competitors? Trends in Plant Science, 17, 181–195.

Pinera-Chavez F J, Berry P M, Foulkes M J, Molero G, Reynolds M P. 2016. Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem and root structural properties. Field Crops Research, 196, 64–74.

Rademacher W. 2000. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 501–531.

Ren J H, Jiang Y H, Han W W, Shi L X, Zhang Y R, Liu G Z, Cui Y H, Du X, Gao Z, Liang X G. 2024. Simultaneous enhancement of maize yield and lodging resistance via delaying plant growth retardant application. Field Crops Research, 317, 109530.

Ren J H, Tang Q, Niu S D, Liu S S, Wei D J, Zhang Y R, Gao Z. 2022. High dose of plant growth regulator enhanced lodging resistance without grain yield reduction of maize under high density. International Journal of Plant Production, 16, 329–339.

Ruzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell, 19, 2197–2212.

Schluttenhofer C M, Massa G D, Mitchell C A. 2011. Use of uniconazole to control plant height for an industrial/pharmaceutical maize platform. Industrial Crops and Products, 33, 720–726.

Shu K, Zhou W G, Yang W Y. 2018. APETALA 2-domain-containing transcription factors: Focusing on abscisic acid and gibberellins antagonism. New Phytologist, 217, 977–983.

Van Soest P J, Robertson J B, Lewis B A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.

Song L, Liu G Z, Yang Y S, Guo X X, Zhang H, Lu T Q, Qing C Y, Hu D, Li S K, Hou P. 2024. Drip fertigation improves maize yield, resource utilization, and economic benefits by increasing light interception under dense planting in Southwest China. Food and Energy Security, 13, e70022.

Stepanova A, Robertson-Hoyt J, Yun J, Benavente L, Xie D, DoleZal K, Schlereth A, Jürgens G, Alonso J. 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell, 133, 177–191.

Tang Q, Ren J H, Du X, Niu S D, Liu S S, Wei D J, Zhang Y R, Bian D H, Cui Y H, Gao Z. 2022. Reduced stem nonstructural carbohydrates caused by plant growth retardant had adverse effects on maize yield under low density. Frontiers in Plant Science, 13, 1035254.

Tian J, Wang C L, Chen F Y, Qin W C, Yang H, Zhao S H, Xia J L, Du X, Zhu Y F, Wu L S, Cao Y, Li H, Zhuang J H, Chen S J, Zhang H Y, Chen Q Y, Zhang M C, Deng X W, Deng D Z, Li J G, et al. 2024. Maize smart-canopy architecture enhances yield at high densities. Nature, 632, 576–584.

Unlu M, Kanber R, Koc D L, Tekin S, Kapur B. 2011. Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment. Agricultural Water Management, 98, 597–605.

Wang X F, Jiao Z H, Zhang Y H, Shi Q B, Wang Q B, Zhou F L, Xu D, Wang G D, Kong F Y, Zhang H S, Li P H, Wang H Y, Li G. 2025. DBB2 regulates plant height and shade avoidance responses in maize. Journal of Integrative Plant Biology, 67, 1323–1338.

West N W, Golenberg E M. 2018. Gender-specific expression of GIBBERELLIC ACID INSENSITIVE is critical for unisexual organ initiation in dioecious Spinacia oleracea. New Phytologist, 217, 1322–1334.

Wu D L, Xu X X, Chen Y L, Shao H, Sokolowski E, Mi G H. 2019. Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China. Agricultural Water Management, 213, 200–211.

Xu C I, Gao Y B, Tian B J, Ren J H, Meng Q F, Wang P. 2017. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research, 200, 71–79.

Xu T, Wang D, Si Y, Kong Y Y, Shao X W, Geng Y Q, Lv Y J, Wang Y J. 2024. Plant growth regulators enhance maize (Zea mays L.) yield under high density by optimizing canopy structure and delaying leaf senescence. Agronomy, 14, 1262.

Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. 2017. Research progress on reduced lodging of high-yield and-density maize. Journal of Integrative Agriculture, 16, 2717–2725.

Yan Y Y, Duan F Y, Li X, Zhao R L, Hou P, Zhao M, Li S K, Wang Y H, Dai T B, Zhou W B. 2024. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiology, 195, 2652–2667.

Yang J P, Li M, Yin Y, Liu Y, Gan X K, Mu X H, Li H Q, Li J K, Li H C, Zheng J, Gou M Y. 2024. Spatial accumulation of lignin monomers and cellulose underlying stalk strength in maize. Plant Physiology and Biochemistry, 214, 108918.

Yang S F. 1969. Ethylene evolution from 2-chloroethylphosphonic acid. Plant Physiology, 44, 1203–1204.

Zarski J, Kusmierek-Tomaszewska R. 2023. Effects of drip irrigation and top dressing nitrogen fertigation on maize grain yield in central poland. Agronomy, 13, 360.

Zhan X X, Kong F L, Liu Q L, Lan T Q, Liu Y Q, Xu J Z, Ou Q, Chen L, Kessel G, Kempenaar C, Yuan J C. 2022. Maize basal internode development significantly affects stalk lodging resistance. Field Crops Research, 286, 108611.

Zhang C Z, Zhang J B, Zhang H, Zhao J H, Wu Q C, Zhao Z H, Cai T Y. 2015. Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (Zea mays L.) under water stress. Plant Growth Regulation, 77, 233–243.

Zhang Q, Zhang L Z, Evers J, van der Werf W, Zhang W Q, Duan L S. 2014. Maize yield and quality in response to plant density and application of a novel plant growth regulator. Field Crops Research, 164, 82–89.

Zhang W Q, Yu C X, Zhang K, Zhou Y Y, Tan W M, Zhang L Z, Li Z H, Duan L S. 2017. Plant growth regulator and its interactions with environment and genotype affect maize optimal plant density and yield. European Journal of Agronomy, 91, 34–43.

Zhang Y S, Wang Y B, Liu C R, Ye D L, Ren D Y, Li Z H, Zhang M C. 2021. Ethephon reduces maize nitrogen uptake but improves nitrogen utilization in Zea mays L. Frontiers in Plant Science, 12, 762736.

Zhang Y S, Wang Y B, Ye D L, Wang W, Qiu X M, Duan L S, Li Z H, Zhang M C. 2019. Ethephon improved stalk strength of maize (Zea mays L.) mainly through altering internode morphological traits to modulate mechanical properties under field conditions. Agronomy, 9, 186.

Zhang Y S, Wang Y B, Ye D L, Xing J P, Duan L S, Li Z H, Zhang M C. 2020. Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification. Plant Science, 290, 110196.

Zhao Y T, Lv Y J, Zhang S, Ning F F, Cao Y B, Liao S H, Wang P, Huang S B. 2022a. Shortening internodes near ear: An alternative to raise maize yield. Journal of Plant Growth Regulation, 41, 628–638.

Zhao Y T, Zhang S, Lv Y J, Ning F F, Cao Y B, Liao S H, Wang P, Huang S B. 2022b. Optimizing ear-plant height ratio to improve kernel number and lodging resistance in maize (Zea mays L.). Field Crops Research, 276, 108376. 

[1] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[2] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[3] Jingye Cheng, Rui Pan, Wenying Zhang, Tianhua He, Chengdao Li. An ancient super allele of the Vrs1 gene driving the recent success in modern barley improvement through optimising spike architecture[J]. >Journal of Integrative Agriculture, 2026, 25(2): 602-609.
[4] Valensi Kautsar, Takamori Kanno, Kaho Sakai, Riza Kurnia Sabri, Keitaro Tawaraya, Kazunobu Toriyama, Kazuhiko Kobayashi, Weiguo Cheng. Reconstructed organic rice fields: Effects on soil organic carbon, total nitrogen, their mineralization, and rice yield in Japanese Andosols[J]. >Journal of Integrative Agriculture, 2026, 25(2): 493-500.
[5] Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area[J]. >Journal of Integrative Agriculture, 2026, 25(1): 326-338.
[6] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[7] Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao. ZmCals12 impacts maize growth and development by regulating symplastic transport[J]. >Journal of Integrative Agriculture, 2026, 25(1): 42-55.
[8] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[9] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[10] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[11] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[12] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[13] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[14] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[15] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
No Suggested Reading articles found!