Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 639-647    DOI: 10.1016/j.jia.2024.08.002
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress

Teng Li1, 2, Shumei Wang1, Qing Liu1, Xuepeng Zhang3, Lin Chen1, Yuanquan Chen1, Wangsheng Gao1, 4#, Peng Sui1, 2#

1 College of Agronomy and Biotechnology, China Agricultural University/Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China

2 Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China

3 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China

4 National Academy of Agricultural Science and Technology Strategy, China Agricultural University, Beijing 100193, China

 Highlights 
The middle and apical kernels in a maize ear were all in the same high temperature treatment, but with different starch accumulation and enzymes activities.
The apical pollination treatment could restore the activity of cell-wall invertase (CWIN) and the synthesis of starch in the apical kernels, while the shading treatment aggravated the inhibition on starch synthesis.
High temperature showed little effect on the activity of CWIN and the synthesis of starch in the middle kernels.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

高温胁迫通过减少籽粒中的淀粉积累来显着降低玉米产量。但是,高温通过减少同化物的供应还是直接影响籽粒中淀粉的合成,从而降低产量仍然是有争议的。为了阐明潜在的机制,在玉米籽粒建成期,采用热敏感型玉米品种先玉335XY,设置30/20°C(最高/温度,对照)和40/30°C两组为期7天的温度处理。采用籽粒同步授粉(SP),顶部籽粒授粉(AP)和遮荫处理来改变玉米中固有的源-库比例。结果表明,在SP处理中,相比30℃处理,顶部籽粒的重量在40°C以下降低了11.940下,13C含量,细胞壁转化酶(CWIN)的活性也分别减少了15.9%,36.7%和16.4%。在遮荫处理中,由于同化物供应量的减少,40/30°C导致13C含量淀粉积累和CWIN活性降低的程度甚至更高。相反,在AP处理中,淀粉含量和CWIN40/30°C下增加了22.018.5,籽粒重量和13C含量与SP处理相差不大。与AP处理中的顶部籽粒一致,高温处理对SP遮荫处理中的中部籽粒没有负面影响,在高温处理下,中部籽粒重量和淀粉含量并未降低。所有籽粒处在相同的环境,但它们对高温的反应不同。在顶部籽粒中,原本在高温受抑制的淀粉合成可以通过AP处理增加碳供应来挽救。在高温条件下,中部籽粒、AP处理下的顶部籽粒与SP和遮荫处理下的籽粒应对高温的反应证明同化物供应降低是高温引起籽粒内淀粉合成减少的首要因素。我们的发现为进一步研究高温诱导籽粒败育提供了一个理论基础。



Abstract  

High temperature stress (HT) significantly reduces maize yield by impairing starch accumulation in kernels.  However, the mechanism by which HT affects starch synthesis remains controversial - whether through reduced assimilate supply or direct inhibition on kernel metabolism.  To clarify these mechanisms, a heat-sensitive maize hybrid, Xianyu 335 (XY), was exposed to 30°C/20°C (maximum/minimum temperature, control) and 40°C/30°C for seven consecutive days during the seed setting stage.  Synchronous pollination (SP), apical pollination (AP), and shading treatments were applied to manipulate the inherent source–sink ratio in maize plants.  Results showed that apical kernel weight decreased by 11.9% under 40°C in the SP treatment.  The 13C content, starch accumulation, and cell-wall invertase (CWIN) activity also declined by 15.9, 36.7, and 16.4%, respectively, under HT.  In the shading treatment, 40°C/30°C caused even greater reductions in 13C content, starch accumulation, and CWIN activity due to diminished assimilate supply.  Conversely, in the AP treatment, starch content and CWIN activity increased by 22.0 and 18.5%, respectively, under 40°C/30°C, resulting in kernel weight and 13C content similar to those in SP and shading treatments regardless of temperature.  Consistent with apical kernels under AP, HT did not negatively affect middle kernels in either SP or shading treatments, as kernel weight and starch content remained unchanged under HT.  Although all kernels were exposed to the same HT or control environment, their responses varied a lot.  The impaired starch synthesis in apical kernels under HT was rescued by increasing carbon supply via AP treatment.  The contrasting performance among middle kernels, apical kernels under AP, and apical kernels under SP or shading indicates that reduced carbon supply is a critical factor underlying inhibited starch accumulation.  Our findings provide a theoretical basis for further understanding kernel abortion under HT.

Keywords:  high temperature stress       maize        seed setting stage        cell wall invertase        starch synthesis  
Received: 23 March 2024   Accepted: 24 June 2024 Online: 05 August 2024  
Fund: 
The authors want to thank the staff of Wuqiao Experimental Station of China Agricultural University for their excellent work.  This research was financially supported by the National Natural Science Foundation of China (32071978) and the National Key Research and Development Program of China (2022YFD2300901 and 2022YFD2300905).
About author:  #Correspondence Peng Sui, E-mail: suipeng@cau.edu.cn; Wangsheng Gao, E-mail: gaows@cau.edu.cn

Cite this article: 

Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. 2026. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress. Journal of Integrative Agriculture, 25(2): 639-647.

Bassetti P, Westgate M E. 1993. Emergence, elongation, and senescence of maize silks. Crop Science33, 271–275.

Cheikh N, Jones R. 1995. Heat stress effects on sink activity of developing maize kernels grown in vitroPhysiologia Plantarum95, 59–66.

Dai D, Ma Z, Song R. 2021. Maize kernel development. Molecular Breeding41, 2.

Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry28, 350–356.

Duke E R, Doehlert D C. 1996. Effects of heat stress on enzyme activities and transcript levels in developing maize kernels grown in culture. Environmental and Experimental Botany36, 199–208.

Edgerton M D. 2009. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiology149, 7–13.

Egharevba P N, Horrocks R D, Zuber M S. 1976. Dry matter accumulation in maize in response to defoliation. Agronomy Journal68, 40–43.

Emes M J, Bowsher C G, Hedley C, Burrell M M, Scrase-Field E S, Tetlow I J. 2003. Starch synthesis and carbon partitioning in developing endosperm. Journal of Experiment Botany54, 569–575.

Hanft J M, Jones R J. 1986a. Kernel abortion in maize. I. Carbohydrate concentration patterns and acid invertase activity of maize kernels induced to abort in vitroPlant Physiology81, 503–580.

Hanft J M, Jones R J. 1986b. Kernel abortion in maize. II. Distribution of 14C among kernel carbohydrates. Plant Physiology81, 511–515.

Hawkins E, Fricker T E, Challinor A J, Ferro C A, Ho C K, Osborne T M. 2013. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Globe Chang Biology19, 937–947.

Huang H, Xie S, Xiao Q, Wei B, Zheng L, Wang Y, Cao Y, Zhang X, Long T, Li Y, Hu Y, Yu G, Liu H, Liu Y, Huang Z, Zhang J, Huang Y. 2016. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156Scientific Reports6, 27590.

Ito S, Hara T, Kawanami Y, Watanabe T, Thiraporn K, Ohtake N, Sueyoshi K, Mitsui T, Fukuyama T, Takahashi Y, Sato T, Sato A, Ohyama T. 2009. Carbon and nitrogen transport during grain filling in rice under high-temperature conditions. Journal of Agronomy and Crop Science195, 368–376.

Jain M, Chourey P S, Boote K J, Allen Jr L H. 2010. Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum (Sorghum bicolor). Journal of Plant Physiology, 167, 578–582.

Jones R, Roessler J, Ouattar S. 1985. Thermal environment during endosperm cell division in maize: Effects on number of endosperm cells and starch granules. Crop Science25, 830–834.

Knox J, Hess T, Daccache A, Wheeler T. 2012. Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters7, 034032.

Larkins B A. 2017. Maize Kernel Development. Commonwealth Agricultural Bureaux International, USA.

Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature529, 84–87.

Li Y T, Xu W W, Ren B Z, Zhao B, Zhang J, Liu P, Zhang Z S. 2020. High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II. Journal of Agronomy and Crop Science206, 548–564.

Liu X, Wang X, Wang X, Gao J, Luo N, Meng Q, Wang P. 2020. Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering. Environmental and Experimental Botany179, 104213.

Liu X, Yu Y, Huang S, Xu C, Wang X, Gao J, Meng Q, Wang P. 2022. The impact of drought and heat stress at flowering on maize kernel filling: Insights from the field and laboratory. Agricultural and Forest Meteorology312, 108733.

Lobell D B, Hammer G L, McLean G, Messina C, Roberts M J, Schlenker W. 2013. The critical role of extreme heat for maize production in the United States. Nature Climate Change3, 497–501.

Mathur S, Agrawal D, Jajoo A. 2014. Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology (Biology), 137, 116–126.

McLaughlin J E, Boyer J S. 2004. Glucose localization in maize ovaries when kernel number decreases at low water potential and sucrose is fed to the stems. Annals of Botany94, 75–86.

Meehl G A, Tebaldi C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science305, 994–997.

Moore C E, Meacham-Hensold K, Lemonnier P, Slattery R A, Benjamin C, Bernacchi C J, Lawson T, Cavanagh A P. 2021. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. Journal of Experiment Botany72, 2822–2844.

Niu S, Du X, Wei D, Liu S, Tang Q, Bian D, Zhang Y, Cui Y, Gao Z. 2021. Heat stress after pollination reduces kernel number in maize by insufficient assimilates. Frontiers in Genetics12, 728166.

Oury V, Caldeira C F, Prodhomme D, Pichon J P, Gibon Y, Tardieu F, Turc O. 2016a. Is change in ovary carbon status a cause or a consequence of maize ovary abortion in water deficit during flowering? Plant Physiology171, 997–1008.

Oury V, Tardieu F, Turc O. 2016b. Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in maize. Plant Physiology171, 986–996.

Paul M J, Fyoer C H. 2001. Sink regulation of photosynthesis. Journal of Experimental Botany52, 1383–1400.

Reed A J, Singletary G W, Schussler J R, Williamson D R, Christy A L. 1988. Shading effects on dry matter and nitrogen partitioning, kernel number, and yield of maize. Crop Science28, 819–825.

Rotundo J L, Tang T, Messina C D. 2019. Response of maize photosynthesis to high temperature: Implications for modeling the impact of global warming. Plant Physiology and Biochemistry141, 202–205.

Ruan Y L. 2014. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. In: Merchant S S, ed., Annual Review of Plant Biology. Annual Reviews, Palo Alto. pp. 33–67.

Sawada O, Ito J, Fujita K. 1995. Characteristics of Photosynthesis and Translocation of 13C-labelled photosynthate in husk leaves of sweet corn. Crop Science35, 480–485.

Setter T L, Flannigan B A. 1986. Sugar and starch redistribution in maize in response to shade and ear temperature treatment. Crop Science26, 575–579.

Shen S, Liang X G, Zhang L, Zhao X, Liu Y P, Lin S, Gao Z, Wang P, Wang Z M, Zhou S L. 2020. Intervening in sibling competition for assimilates by controlled pollination prevents seed abortion under postpollination drought in maize. Plant Cell Environment43, 903–919.

Shen S, Zhang L, Liang X G, Zhao X, Lin S, Qu L H, Liu Y P, Gao Z, Ruan Y L, Zhou S L. 2018. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. Journal of Experiment Botany69, 1599–1613.

Shimamoto K, Nelson O E. 1981. Movement of C-compounds from maternal tissue into maize seeds grown in vitroPlant Physiology67, 429–432.

Suwa R, Hakata H, Hara H, El-Shemy H A, Adu-Gyamfi J J, Nguyen N T, Kanai S, Lightfoot D A, Mohapatra P K, Fujita K. 2010. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiolgy Biochemistry48, 124–130.

Tardieu F, Parent B, Caldeira C F, Welcker C. 2014. Genetic and physiological controls of growth under water deficit. Plant Physiology164, 1628–1635.

Thitisaksakul M, Jiménez R C, Arias M C, Beckles D M. 2012. Effects of environmental factors on cereal starch biosynthesis and composition. Journal of Cereal Science56, 67–80.

Turc O, Tardieu F. 2018. Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics. Journal of Experiment Botany69, 3245–3254.

Wang Y, Tao H, Tian B, Sheng D, Xu C, Zhou H, Huang S, Wang P. 2019. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany158, 80–88.

Xu Y J, Gu D J, Zhang B B, Zhang H, Wang Z Q, Yang J C. 2013. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agronomica Sinica39, 1452–1461. (in Chinese)

Yang H, Gu X, Ding M, Lu W, Lu D. 2018. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Scientific Reports8, 15665.

Zhang C X, Feng B H, Chen T T, Fu W M, Li H B, Li G Y, Jin Q Y, Tao L X, Fu G F. 2018. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source–sink relationship and sugars allocation. Environmental and Experimental Botany155, 718–733.

Zhao L X, Zhang P, Wang R N, Wang P, Tao H B. 2014. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica40, 1839–1845. (in Chinese)

Zinselmeier C, Jeong B R, Boyer J S. 1999. Starch and the control of kernel number in maize at low water potentials. Plant Physiology121, 25–35.


[1] Fangman Li, Junshen Lin, John Kojo Ahiakpa, Wenxian Gai, Jinbao Tao, Pingfei Ge, Xingyu Zhang, Yizhuo Mu, Jie Ye, Yuyang Zhang. ZF protein C2H2-71 regulates the soluble solids content in tomato by inhibiting LIN5[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2190-2202.
[2] Anmin Zhang, Zihong Li, Qirui Zhou, Jiawen Zhao, Yan Zhao, Mengting Zhao, Shangyu Ma, Yonghui Fan, Zhenglai Huang, Wenjing Zhang. An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting[J]. >Journal of Integrative Agriculture, 2025, 24(1): 114-131.
[3] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[4] LIU Rui, ZHOU Guo-peng, CHANG Dan-na, GAO Song-juan, HAN Mei, ZHANG Jiu-dong, SUN Xiao-feng, CAO Wei-dong. Transfer characteristics of nitrogen fixed by leguminous green manure crops when intercropped with maize in northwestern China[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1177-1187.
[5] XU Bo, ZHOU Zhi-guo, GUO Lin-tao, XU Wen-zheng, ZHAO Wen-qin, CHEN Bing-lin, MENG Ya-li, WANG You-hua. Susceptible time window and endurable duration of cotton fiber development to high temperature stress[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1936-1945.
[6] Lü Guo-hua, WU Yong-feng, BAI Wen-bo, MA Bao, WANG Chun-yan , SONG Ji-qing. Influence of High Temperature Stress on Net Photosynthesis, Dry Matter Partitioning and Rice Grain Yield at Flowering and Grain Filling Stages[J]. >Journal of Integrative Agriculture, 2013, 12(4): 603-609.
[7] TAO Zhi-qiang, SUI Peng, CHEN Yuan-quan, LI Chao, NIE Zi-jin, YUAN Shu-fen, SHI Jiangtao. Subsoiling and Ridge Tillage Alleviate the High Temperature Stress in Spring Maize in the North China Plain[J]. >Journal of Integrative Agriculture, 2013, 12(12): 2179-2188.
[8] TAN Yue, LI Ling, LENG Chuan-yuan, LI Dong-mei, CHEN Xiu-de, GAO Dong-sheng. Respiratory Response of Dormant Nectarine Vegetative Buds to High Temperature Stress[J]. >Journal of Integrative Agriculture, 2013, 12(1): 80-86.
No Suggested Reading articles found!