Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area

Xiaohui Xu1, 2, Qiang Chai, 2#, Falong Hu1, 2, Wen Yin1, 2, Zhilong Fan1, 2, Hanting Li1, 3, Zhipeng Liu1, 2, Qiming Wang1, 2

1 State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China

2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

3 College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China

 Highlights 

l Intercropping green manure with reduced N improves the structure of aggregates.

l The impact of N reduction on SOC was compensated by intercropping green manure.

l The compensatory effect of intercropping increases with time.

l Intercropping with reduced N increases SOC by optimizing soil aggregates.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

提高土壤有机碳(SOC)储量是实现农业可持续发展的重要途径。然而,农业生产中, 使用豆科绿肥作物替代部分化学氮肥能否实现这一目标尚不明确。本研究通过为期六年的田间定位试验,探究绿肥间作结合化学氮肥减量对土壤有机碳储量的影响土壤团聚体组成与碳固存之间的关系。试验采用裂区设计,主区设置三种种植模式玉米间作箭筈豌豆(M/V)、玉米间作油菜(M/R)以及单作玉米(M), 在副区设置两种施氮梯度:常规施氮量(N2, 360 kg ha-1)和减量施氮(N1, 270 kg ha-1, 减少25%)基于2020-2022连续采集土壤样本。获得结果显示, 与单作玉米相比, 绿肥间作(M/VM/R)显著提升了SOC含量, 三年平均增幅达12.19.1%有效弥补了因施氮量减少25%所产生的负面影响。M/V与M/R之间无显著差异。在单作玉米中, N1条件下SOC含量较N2处理降低了9.3-10.5%;但在间作绿肥模式(M/VM/R), N1N2处理的SOC储量差异并不显著。在N1处理下, M/VM/R的土壤有机碳含量分别比单作玉米高20.916.3%, 而在N2处理下, 二者与单作玉米无差异。随着种植年限的延长,间作绿肥模式表现出显著的累积效应影响, 2022年这两种间作系统在0-20 cm层的SOC含量相较于2020年提高了5.3%。减氮条件下, 间作绿肥与单作玉米相比, 增加了大团聚体(>0.25 mm)的比例及团聚体稳定性(MWD和GMD), 同时降低了微团聚体(<0.25 mm)的比例。结构方程模型表明,种植模式和施氮水平主要是是通过调控大团聚体组成和团聚体有机碳(AOC间接影响SOC。相关性分析进一步揭示大团聚体组成与SOC含量呈显著正相关 (R2=0.64)。此外, 间作绿肥及减量施氮能够通过增加土壤有机碳含量维持较高的作物产量。本研究证实, 在绿洲灌溉区实施间作绿肥结合化学氮肥减量25%是优化土壤团聚体组成增加土壤有机碳汇、提高玉米产量的可行措施。



Abstract  

Enhancing soil organic carbon (SOC) stocks is a key aspect of modern agriculture, but whether this can be achieved by incorporating legume green manure crops in cereal production to substitute synthetic N fertilizers is unknown. This study used a six-year (2017-2022) field study to explore the impacts of intercropping green manure with maize and reducing nitrogen fertilization on SOC stocks, while specifically focusing on the relationship between aggregate composition and carbon sequestration. Maize intercropped with common vetch (M/V), maize intercropped with rapeseed (M/R), and sole maize (M), were each tested at conventional (N2, 360 kg ha-1) and reduced (N1, 270 kg ha-1, 25% reduced) N application rates. Soil was sampled in 2020, 2021, and 2022. Compared with sole maize, intercropping with green manure (M/V and M/R) significantly increased SOC stocks which compensated for any negative effect due to the 25% reduction in N application. Based on 3-year averages, intercropping with M/V and M/R increased the SOC content compared to sole maize (M) by 12.1 and 9.1%, respectively, with intercropping further mitigating the negative impact of reduced nitrogen application. There was no significant difference between M/V and M/R. The SOC content at N1 was reduced by 9.3-10.5% compared to that at N2 in sole maize, but the differences in SOC stocks between N1 and N2 were not significant in the intercropping patterns (M/V and M/R). The intercropped M/V and M/R showed 20.9 and 16.3% higher SOC contents compared to sole maize at N1, with no differences at N2. Intercropping green manure led to a 5.3% greater SOC in the 0-20 cm depth soil in 2022 compared to that in 2020, due to the cumulative effect of two years of green manure intercropping. Intercropping green manure (M/V and M/R) increased the proportion of macroaggregates (>0.25 mm) and aggregate stability while reducing the proportion of microaggregates compared to sole maize under the N1 application. Structural equation modeling indicated that cropping patterns and nitrogen application levels mainly affect SOC indirectly by regulating the composition of macroaggregates and aggregate organic carbon (AOC). Correlation analysis further revealed that the composition of macroaggregates is significantly and positively correlated with the SOC content (R²=0.64). In addition, intercropping green manure can maintain high crop yields by increasing SOC under reduced chemical nitrogen application. The results of this study show that intercropping green manure with grain crops can be a viable measure for increasing SOC sinks and maize productivity by optimizing the aggregate composition with reduced N application in the Oasis Irrigation Area. 

Keywords:  intercropping green manure       soil organic carbon       soil aggregate composition       maize  
Online: 25 April 2025  
Fund: 

This work was supported by the National Key Research and Development Program of China (2021YFD1700204), the National Natural Science Foundation of China (U21A20218 and 32372238), the Modern Agro-Industry Technology Research System of China (CARS-22-G-12) and the “Innovation Star” Program of Graduate Students in 2025 of Gansu Province, China (2025CXZX-749).

About author:  Xiaohui Xu, Mobile: +86-931-7631145, E-mail: xuxiaohui0318@126.com; #Correspondence Qiang Chai, Mobile: +86-931-7631145, Email: chaiq@gsau.edu.cn

Cite this article: 

Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. 2025. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.029

Ablimit R, Li W K, Zhang J D, Gao H N, Zhao Y M, Cheng M M, Meng X Q, An L Z, Chen Y. 2022. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. Journal of Environmental Management, 321, 115859-115871.

Agnihotri R, Sharma M P, Prakash A, Ramesh A, Bhattacharjya S, Patra A K, Manna M C, Kurganova I, Kuzyakov Y. 2022. Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: Review of mechanisms and controls. Science of the Total Environment, 806, 150571-150581.

Amelung W, Bossio D, de Vries W, Kögel Knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J, Minasny B, Pan G, Paustian K, Rumpel C, Sanderman J, van Groenigen J W, Mooney S, van Wesemael B, Wander M, Chabbi A. 2020. Towards a global-scale soil climate mitigation strategy. Nature Communications, 11, 5427.

Ansari M A, Choudhury B U, Layek J, Das A, Lal R, Mishra V K. 2022. Green manuring and crop residue management: Effect on soil organic carbon stock, aggregation, and system productivity in the foothills of Eastern Himalaya (India). Soil & Tillage Research, 218, 105318.

Bauçà S C, Marqués A, Vidal N L, Bota J, Baraza E. 2019. Long-term establishment of natural green cover provides agroecosystem services by improving soil quality in a Mediterranean vineyard. Ecological Engineering, 127, 285-291.

Beillouin D, Corbeels M, Demenois J, Berre D, Boyer A, Fallot A, Feder F, Cardinael R. 2023. A global meta-analysis of soil organic carbon in the Anthropocene. Nature Sustainability, 14, 3700.

Bossio D, Cook Patton S, Ellis P, Fargione J, Sanderman J, Smith P, Wood S, Zomer R, Von Unger M, Emmer I. 2020. The role of soil carbon in natural climate solutions. Nature Sustainability, 3, 391-398.

Brooker R W, Bennett A E, Cong W F, Daniell T J, George T S, Hallett P D, Hawes C, Iannetta P P M, Jones H G, Karley A J. 2014. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206, 107-117.

Chai Q, Nemecek T, Liang C, Zhao C, Yu A Z, Coulter J A, Wang Y F, Hu F L, Wang L, Siddique K H. 2021. Integrated farming with intercropping increases food production while reducing environmental footprint. Proceedings of the National Academy of Sciences of the United States of America, 118, e2106382118.

Chai Q, Qin A Z, Gan Y T, Yu A Z. 2014. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agronomy for Sustainable Development, 34, 535-543.

Chen H Q, Hou R X, Gong Y X, Li H W, Fan M S, Kuzyakov Y. 2009. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil & Tillage Research, 106, 85-94.

Chen H Q, Liang Q, Gong Y S, Kuzyakov Y, Fan M S, Plante A F. 2019. Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil & Tillage Research, 194, 104296-104303.

Chen Y, Zhang X D, He H B, Xie H T, Yan Y, Zhu P, Ren J, Wang L C. 2010. Carbon and nitrogen pools in different aggregates of a Chinese Mollisol as influenced by long-term fertilization. Journal of Soils & Sediments, 10, 1018-1026.

Chenu C, Angers D A, Barré P, Derrien D, Arrouays D, Balesdent J. 2019. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil & Tillage Research, 188, 41-52.

Cong W F, Ruijven J V, Mommer L, Deyn G B D, Hoffland E. 2014. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology, 102, 1163-1170.

Cotrufo M F, Ranalli M G, Haddix M L, Six J, Lugato E. 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 12, 989-994.

Ding X L, Han X Z. 2014. Effects of long-term fertilization on contents and distribution of microbial residues within aggregate structures of a clay soil. Biology and Fertility of Soils, 50, 549-554.

Donhauser J, Qi W, Pinto B B, Frey B. 2020. High temperatures enhance the microbial genetic potential to recycle C and N from necromass in highmountain soils. Global Change Biology, 27, 1365-1386.

Elfstrand S, Hedlund K, Mårtensson A. 2007. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Applied Soil Ecology, 35, 610-621.

Franke A C, Laberge G, Oyewole B D, Schulz S. 2008. A comparison between legume technologies and fallow, and their effects on maize and soil traits, in two distinct environments of the West African savannah. Nutrient Cycling in Agroecosystems, 82, 117-135.

Gou Z W, Yin W, Asibi A E, Fan Z L, Chai Q, Cao W D. 2022. Improving the sustainability of cropping systems via diversified planting in arid irrigation areas. Agronomy for Sustainable Development, 42, 1-16.

Han F, Guo R, Hussain S, Guo S, Cai T, Zhang P, Jia Z, Naseer M A, Saqib M, Chen X. 2023. Rotation of planting strips and reduction in nitrogen fertilizer application can reduce nitrogen loss and optimize its balance in maize–peanut intercropping. European Journal of Agronomy, 143, 126707-126720.

Hartley I P, Hill T C, Chadburn S E, Hugelius G. 2021. Temperature effects on carbon storage are controlled by soil stabilisation capacities. Nature Communications, 12, 6713.

Hauggaard Nielsen H, Jensen E S. 2005. Facilitative root interactions in intercrops. Plant and Soil, 274, 237-250.

Hazra K K, Nath C P, Singh U, Praharaj C S, Kumar N, Singh S S, Singh N P. 2019. Diversification of maize-wheat cropping system with legumes and integrated nutrient management increases soil aggregation and carbon sequestration. Geoderma, 353, 308-319.

He Y T, Zhang W J, Xu M G, Tong X G, Sun F X, Wang J Z, Huang S M, Zhu P, He X H. 2015. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Science of the Total Environment, 532, 635-644.

Heanes D L. 1984. Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Communications in Soil Science and Plant Analysis, 15, 1191-1213.

Hu Q J, Jiang T, Thomas B W, Chen J, Xie J, Hu Y X, Kong F i, Yang Y, Chen X P, Zhang Y T, Shi X J. 2023. Legume cover crops enhance soil organic carbon via microbial necromass in orchard alleyways. Soil & Tillage Research, 234, 105858.

Hu Q J, Zhang Y T, Cao W D, Yang Y Y, Hu Y X, He T G, Li Z Y, Wang P, Chen X P, Chen J, Shi X J. 2024. Legume cover crops sequester more soil organic carbon than non-legume cover crops by stimulating microbial transformations. Geoderma, 450, 117024.

Kabiri V, Raiesi F, Ghazavi M A. 2015. Six years of different tillage systems affected aggregate-associated SOM in a semi-arid loam soil from Central Iran. Soil & Tillage Research, 154, 114-125.

Kazmierczak T, Yang L, Boncompagni É, Meilhoc E, Brouquisse R. 2020. Legume nodule senescence: A coordinated death mechanism between bacteria and plant cells. Advances in Botanical Research, 94, 181-212.

Kong A Y Y, Six J, Bryant D C, Denison R F, van Kessel C. 2005. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Science Society of America Journal, 69, 1078-1085.

Lal R. 2004a. Offsetting China's CO2 emissions by soil carbon sequestration. Climatic Change, 65, 263-275.

Lal R. 2004b. Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1-22.

Lal R, Delgado J A, Groffman P M, Millar N, Dell C, Rotz A. 2011. Management to mitigate and adapt to climate change. Journal of Soil and Water Conservation, 66, 276-285.

Li H, Yang S, Semenov M V, Yao F, Ye J, Bu R C, Ma R A, Lin J, Kurganova I, Wang X G, Deng Y, Kravchenko I, Jiang Y, Kuzyakov Y. 2021. Temperature sensitivity of SOM decomposition is linked with a k-selected microbial community. Global Change Biology, 27, 2763-2779.

Li H T, Fan Z L, Wang Q M, Wang G C, Yin W, Zhao C, Yu A Z, Cao W D, Chai Q, Hu F L. 2023. Green manure and maize intercropping with reduced chemical N enhances productivity and carbon mitigation of farmland in arid areas. European Journal of Agronomy, 145, 126788.

Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L. 2021. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability4, 943-950. 

Liu K L, Han T F, Huang J, Huang Q H, Li D M, Hu Z H, Yu X C, Muhammad Q, Ahmed W, Hu H W. 2019. Response of soil aggregate-associated potassium to long-term fertilization in red soil. Geoderma, 352, 160-170.

Liu R, Jiang P, Zhou G P, Chang D N, Liang H, Chai Q, Cao W D. 2024. Co-incorporation of wheat straw and hairy vetch reduced soil N2O emission via regulating nitrifier and denitrifier structure on the Qinghai Plateau. Applied Soil Ecology, 202, 105574.

Liu W X, Wei Y X, Li R C, Chen Z, Wang H D, Virk A L, Lal R, Zhao X, Zhang H L. 2022. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Science of the Total Environment, 847, 157518.

Lu X F, Gilliam F S, Guo J Y, Hou E Q, Kuang Y W. 2021. Decrease of soil acidity has greater effects than increase of aboveground carbon inputs on soil organic carbon in terrestrial ecosystems of China under nitrogen enrichment. Journal of Applied Ecology, 59, 768-778.

Martens D A. 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biology and Biochemistry, 32, 361-369.

De Medeiros E V, Silva A O, Duda G P, Dos Santos U J, Junior A J D S. 2018. The combination of Arachis pintoi green manure and natural phosphate improves maize growth, soil microbial community structure and enzymatic activities. Plant and Soil, 435, 175.170-185.170.

Minasny B, Malone B P, Mcbratney A B, Angers D A, Winowiecki L A. 2017. Soil carbon 4 per mille. Geoderma, 292, 59-86.

Nakamoto T, Suzuki K. 2001. Influence of soybean and maize roots on the seasonal change in soil aggregate size and stability. Plant Production Science, 4, 317-319.

Patoine G, Eisenhauer N, Cesarz S, Phillips H R P, Xu X, Zhang L, Guerra C A. 2022. Drivers and trends of global soil microbial carbon over two decades. Nature Communications, 13, 4195.

Qiu Q Y, Wu L F, yang Z O, Li B B, Xu Y Y, Wu S S, Gregorich E G. 2016. Priming effect of maize residue and urea N on soil organic matter changes with time. Applied Soil Ecology, 100, 65.60-74.60.

Ren S, Terrer C, Li J, Cao Y F, Yang S S, Liu D. 2024. Historical impacts of grazing on carbon stocks and climate mitigation opportunities. Nature Climate Change, 14, 1-7.

Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, Wetterstrand H, DeClerck F, Shah M, Steduto P, de Fraiture C, Hatibu N, Unver O, Bird J, Sibanda L, Smith J. 2017. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46, 4-17.

Sainju U, Whitehead W, Singh B. 2003. Cover crops and nitrogen fertilization effects on soil aggregation and carbon and nitrogen pools. Canadian Journal of Soil Science, 83, 155-165.

Six J, Conant R T, Paul E A, Paustian K. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155-176.

Six J, Elliott E T, Paustian K. 2000. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64, 1042-1049.

Sun T, Mao X L, Han K F, Wang X J, Cheng Q, Liu X, Zhou J J, Ma Q X, Ni Z H, Wu L H. 2023. Nitrogen addition increased soil particulate organic carbon via plant carbon input whereas reduced mineral−associated organic carbon through attenuating mineral protection in agroecosystem. Science of the Total Environment, 899, 165705.

Tian X L, Wang C B, Bao X G, Wang P, Li X F, Yang S C, Ding G C, Christie P, Li L. 2019. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 436, 173-192.

Udom B, Nuga B, Adesodun J. 2016. Water-stable aggregates and aggregate-associated organic carbon and nitrogen after three annual applications of poultry manure and spent mushroom wastes. Applied Soil Ecology, 101, 5-10.

Walkley A, Black I A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

Wang J, Sun X, Du L, Sun W, Wang X, Gaafar A R Z, Zhang P, Cai T, Liu T, Jia Z, Chen X, Ren X. 2024. Appropriate fertilization increases carbon and nitrogen sequestration and economic benefit for straw-incorporated upland farming. Geoderma, 441, 116743.

Wang W, Chen G, Li M Y, Chen Y, Wang Y, Tao H, Hou H, Rehman M M U, Ashraf M, Song Y, Kavagi L, Wang B Z, Xiong Y. 2024. Long-term cereal-legume intercropping accelerates soil organic carbon loss in subsoil of dryland. Resources Conservation and Recycling, 211, 107898.

Wang W, Li M, Zhu S, Khan A, Tao X, Liu H, Zhang W, Tao H, Gong D, Song C, Xiong Y. 2023. Plant facilitation improves carbon production efficiency while reducing nitrogen input in semiarid agroecosystem. Catena, 230, 107247.

Wang X, Chen Y, Yang K, Duan F, Liu P, Wang Z, Wang J. 2021. Effects of legume intercropping and nitrogen input on net greenhouse gas balances, intensity, carbon footprint and crop productivity in sweet maize cropland in South China. Journal of Cleaner Production, 314, 127997-128006.

Wang Y, Pang J, Zhang M, Tian Z, Wei T, Jia Z, Ren X, Zhang P. 2023. Is adding biochar be better than crop straw for improving soil aggregates stability and organic carbon contents in film mulched fields in semiarid regions? -Evidence of 5-year field experiment. Journal of Environmental Management, 338, 117711.

Wang Y D, Wang Z L, Zhang Q Z, Hu N, Li Z F, Lou Y L, Li Y, Xue D M, Chen Y, Wu C Y. 2018. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Science of the Total Environment, 624, 1131-1139.

Wang Y L, Wu P N, Qiao Y B, Li Y M, Liu S M, Gao C K, Liu C S, Shao J, Yu H L, Zhao Z H, Guan X K, Wen P F, Wang T C. 2023. The potential for soil C sequestration and N fixation under different planting patterns depends on the carbon and nitrogen content and stability of soil aggregates. Science of the Total Environment, 897, 165430. 

Xie Z, Tu S, Shah F, Xu C, Chen J, Han D, Liu G, Li H, Muhammad I, Cao W. 2016. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Field Crops Research, 188, 142-149.

Xu X R, Zhang W J, Xu M G, Li S Y, An T T, Pei J B, Xiao J, Xie H T, Wang J K. 2016. Characteristics of differently stabilised soil organic carbon fractions in relation to long-term fertilisation in Brown Earth of Northeast China. Science of the Total Environment, 572, 1101-1110.

Yan Z J, Zhou J, Liu C Y, Jia R, Mganga K Z, Yang L, Yang Y D, Peixoto L, Zang H D, Zeng Z H. 2023. Legume-based crop diversification reinforces soil health and carbon storage driven by microbial biomass and aggregates. Soil & Tillage Research, 234, 105848.

Yan Z J, Zhou J, Nie J W, Yang Y D, Zhao J, Zeng Z H, Marshall M R, Peixoto L, Zang H D. 2021. Do cropping system and fertilization rate change water-stable aggregates associated carbon and nitrogen storage? Environmental Science and Pollution Research International, 28, 65862-65871.

Yang X L, Xiong J R, Du T S, Ju X T, Gan Y T, Li S, Xia L L, Shen Y J, Pacenka S, Steenhuis T S, Siddique K H M, Kang S Z, Butterbach-Bahl K. 2024. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nature Communications, 15, 198.

Zhang D B, Yao P W, Zhao N, Cao W D, Zhang S Q, Li Y Y, Huang D L, Zhai B N, Wang Z H, Gao Y J. 2018. Building up the soil carbon pool via the cultivation of green manure crops in the Loess Plateau of China. Geoderma, 337, 425-433.

Zhang W J, Munkholm L J, Liu X, An T T, Xu Y D, Ge Z, Xie N H, Li A M, Dong Y Q, Peng C, Li S Y, Wang J K. 2023. Soil aggregate microstructure and microbial community structure mediate soil organic carbon accumulation: Evidence from one-year field experiment. Geoderma, 430, 116324.

Zhang X, Lassaletta L. 2022. Manure management benefits climate with limits. Nature Food, 3, 312-313.

Zhang X X, Gregory A S, Whalley W R, Coleman K, Illangasekare T H. 2021. Relationship between soil carbon sequestration and the ability of soil aggregates to transport dissolved oxygen. Geoderma, 403, 115370.

Zhang Y C, Zuo Q Y, Du B B, Chen W L, Wei D, Huang Q Y. 2018. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China. Science of the Total Environment, 635, 784-792. 

Zhang Z H, Jun N, Liang H, Wei C L, Yun W, Liao Y L, Lu Y H, Zhou G G, Gao S J, Cao W D. 2022. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in South China. Journal of Integrative Agriculture, 22, 1529-1545.

Zhao H L, Shar A G, Li S, Chen Y L, Shi J L, Zhang X Y, Tian X H. 2018. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil & Tillage Research, 175, 178-186.

Zhao X P, Hao C K, Zhang R Q, Jiao N Y, Tian J, Lambers H, Liang C, Cong W F, Zhang F S. 2023. Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation. Soil Biology and Biochemistry, 185, 109146.

Zhou P, Zhang X X, Pan G X. 2006. Effect of long-term fertilization on content of total and particulate organic carbon and their depth distribution of a paddy soil: An example of huangnitu from the Tai Lake region,China. Plant Nutrition & Fertilizer Science, 12, 765-771. (in Chinese)

No related articles found!
No Suggested Reading articles found!