Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Antagonism and convergence of MiCOL14B-GQ and MiCOL14B-JH in mango (Mangifera indica) flowering and abiotic stress

Junjie Zhong, Ruoyan Li, Yuan Liu, Shuquan Chen, Huibao Wen, Teng Tang, Cong Luo#, Xinhua He#

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

CONSTANS /CONSTANS-LIKECO/COL)基因家族在植物开花调控和逆境响应中发挥重要作用。本研究在两个不同芒果品种中鉴定到 MiCOL14B 基因的两个变异体,分别命名为 MiCOL14B-GQ MiCOL14B-JH,二者在序列和结构域上存在显著差异。这两个基因在芒果各组织中均有表达,定位于细胞核,且对干旱和盐胁迫均有响应。在转基因拟南芥中,MiCOL14B-GQ 延迟开花,而 MiCOL14B-JH 促进开花。这种表型差异源于二者的分子调控特异性,酵母单杂交(Y1H)和双荧光素酶报告基因实验表明,两个变异体均能直接结合成花素基因(MiFTs)的启动子,其中 MiCOL14B-GQ 抑制其转录,MiCOL14B-JH 则促进其转录。转基因芒果根系中 MiFTs 基因的表达水平变化进一步验证了该机制。此外,在转基因拟南芥和转基因芒果根系中,MiCOL14B-GQ MiCOL14B-JH 均能提高植株对干旱和盐胁迫的耐受性。它们通过提高脯氨酸(Pro)含量和超氧化物歧化酶(SOD)活性,同时降低丙二醛(MDA)和过氧化氢(H₂O₂)的积累,显著增强了逆境耐受性。酵母双杂交(Y2H)和双分子荧光互补(BiFC)实验表明,MiCOL14B-GQ MiCOL14B-JH 能与多个逆境相关蛋白相互作用。本研究首次揭示了 MiCOL14B 基因序列变异在调控芒果开花和逆境响应中的潜在功能,为芒果分子育种提供了宝贵的遗传资源。



Abstract  The CONSTANS/CONSTANS-LIKE (CO/COL) gene family plays important roles in plants flowering and stress response. In this study, two variants of the MiCOL14B gene were identified from two different mango cultivars; they were designated as MiCOL14B-GQ and MiCOL14B-JH, which exhibited significant differences in sequence and B-box domain. Both genes are expressed in various tissues of mango, localized in the nucleus, and responsive to drought and salt stress. In transgenic Arabidopsis thaliana, MiCOL14B-GQ delayed flowering, while MiCOL14B-JH promoted flowering. This phenotypic divergence stemmed from their molecular regulatory specificity. Yeast one-hybrid (Y1H) and dual-luciferase reporter assays demonstrated that both variants directly bind to the promoters of florigen genes (MiFTs), with MiCOL14B-GQ repressing their transcription and MiCOL14B-JH enhancing it. Altered expression levels of MiFTs in the roots of transgenic mango further validated this mechanism. Moreover, both MiCOL14B-GQ and MiCOL14B-JH improved stress tolerance under drought and salt conditions in transgenic A. thaliana as well as in transgenic mango roots. These variants significantly increased stress tolerance by increasing proline (Pro) content and superoxide dismutase (SOD) activity, while reducing malondialdehyde (MDA) and hydrogen peroxide (H₂O₂) accumulation. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that MiCOL14B-GQ and MiCOL14B-JH interact with several stress-related proteins. This study demonstrates for the first time the potential function of MiCOL14B gene sequence variation in regulating flowering and stress responses, providing valuable genetic resources for mango molecular breeding.


Keywords:  Mango       MiCOL14B       Flowering regulation       Abiotic stress       Protein interaction  
Online: 13 January 2026  
Fund: 

This research was supported by National Natural Science Foundation of China (32360726), Guangxi Key Technologies R&D Program (Guikenong AB241484007) and the CARSGIT-Guangxi Mango Industry Project (nycytxgxcxtd-2021-06-02).

About author:  #Correspondence Cong Luo, E-mail: 22003luocong@163.com; Xinhua He, E-mail: hexh@gxu.edu.cn

Cite this article: 

Junjie Zhong, Ruoyan Li, Yuan Liu, Shuquan Chen, Huibao Wen, Teng Tang, Cong Luo, Xinhua He. 2026. Antagonism and convergence of MiCOL14B-GQ and MiCOL14B-JH in mango (Mangifera indica) flowering and abiotic stress. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.012

Bajpai, A., Muthukumar, M., Bajpai, Y., Anand, S., Ahmad, I., Das, A. 2017. Salinity induced growth, physiological and gene expression responses in polyembryonic mango cultivars. Green Farming, 8, 1076-1080.

Blazquez M A, Green R, Nilsson O, Sussman M R, Weigel D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 10, 791-800.

Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner A M, Jansson S, Strauss S H, Nilsson O. 2006. CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees. Science. 312,1040-1043.

Cao X, Xie H, Song M, Lu J, Ma P, Huang B, Wang M, Tian Y, Chen F, Peng J, Lang Z, Li G, Zhu J K. 2023. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. The Innovation, 4, 100345.

Chen J H. 2002. Guire Mango No.82 - A Fine Mid-ripening Mango Variety. Guangxi Tropical Agriculture, 1, 16-29. (in Chinese)

Chen J, Chen J Y, Wang J N, Kuang J F, Shan W, Lu W J. 2012. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit. Gene496, 110-117.

Chen P, Zhi F, Li X, Shen W, Yan M, He J, Bao C, Fan T, Zhou S, Ma F, Guan Q. 2022. Zinc-finger protein MdBBX7/MdCOL9, a target of MdMIEL1 E3 ligase, confers drought tolerance in apple. Plant Physiology, 188, 540-559.

Chen S Q, Luo C, Liu Y, Liang R Z, Huang X, Guo Y HLi R Y, Huang C T, Wang ZHe X H. 2023. Lack of the CCT domain changes the ability of mango MiCOL14A to resist salt and drought stress in Arabidopsis. Plant Science, 335, 111826.

Chen X S. 2000. Preliminary Report on the Introduction and Trial Planting of Jinhuan Mango. Guangxi Tropical Crops Science & Technology, 1, 11-12. (in Chinese)

Corbesier L, Vincent C, Jang S, Fornara FFan Q Z, Searle I, Giakountis A, Farrona SGissot L, Turnbull C, Coupland G. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316, 1030-1033. 

Cui Z K, Tu Z H, Yang L C, Li W, Wu J P, Li H G. 2023. Overexpression of the Liriodendron chinense CONSTANS gene in Arabidopsis causes earlier flowering under long-day conditions. Plant Growth Regulation, 100, 577-591.

Deivasigamani, P., Vijayakumar, R. M., Balakrishnan, S., Arulmozhiselvan, K., Sivakumar, R. (2018). Effect of salt stress on morphological characters of mango rootstocks. International Journal of Chemical Studies6, 387-389.

Du J C, Zhu X, He K R, Kui M Y, Zhang J P, Han X, Fu Q T, Jiang Y J, Hu Y R. 2023. CONSTANS interacts with and antagonizes ABF transcription factors during salt stress under long-day conditions. Plant Physiology, 193, 1675-1694.

Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A. 2013. PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proceedings of the National Academy of Sciences of the United States of America, 110, 18017-18022.

Feng X, Wu X L, Wu H L, Li Y, Zhou B J, Jiang y, Zhang S L, Wei J L, Su S C, Hou Z X. 2025. Short-photoperiod induces floral induction involving carbohydrate metabolism and regulation by VcCO3 in greenhouse blueberry. Plant, Cell & Environment, 48, 2145-2161.

Gangappa S N, Crocco C D, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto J F. 2013. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. The Plant Cell, 25, 1243-1257.

González A M, Vander Schoor J K, Fang C, Kong F, Wu J, Weller J L, Santalla M. 2021. Ancient relaxation of an obligate short-day requirement in common bean through loss of CONSTANS-like gene function. Current Biology, 31, 1643–1652.

Gou J L, Sang X L, Liu L Q, Cao J S, Liu Y, Ren C, Zhang Z X, Jue D W, Shi S Y. 2025. Genome-wide identification and functional analysis of the longan CONSTANS (CO) family. BMC Plant Biology, 25, 418.

Guo Y H, Luo C, Liu Y, Liang R Z, Yu H X, Lu X X, Mo X, Chen S Q, He X H. 2022. Isolation and functional analysis of two CONSTANS-like 1 genes from mango. Plant Physiology and Biochemistry, 172, 125-135.

Huang J H. Ma W H. Liang G L. Zhang L Y. Wang W X. Cai Z J. Wen S X. 2010. Effects of low temperatures on sexual reproduction of ‘Tainong 1’ mango (Mangifera indica). Scientia Horticulturae126, 109-119.

Lagercrantz U, Axelsson T. 2000. Rapid evolution of the family of CONSTANS-LIKE genes in plants. Molecular biology and evolution17, 1499-1507.

Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany, 61, 2247-2254.

Lei X, Tan B, Liu Z, Wu J, Lv J, Gao C. 2021. ThCOL2 improves the salt stress tolerance of Tamarix hispida. Frontiers in Plant Science, 12, 653791.

Li J J, Lu T T, Mo W J, Yu H X, Li K J, Huang X, Fan Z Y, He X H, Luo C. 2024. Functional characterization of MiFTs implicated in early flowering and stress resistances of mango. International Journal of Biological Macromolecules, 280, 135669.

Li R Y, Luo C, Zhong J J, Liu Y, Wen H B, Xu F, He Z X, Huang C T, He X H. 2025. Functional identification of mango MiGID1A and MiGID1B genes confers early flowering and stress tolerance. Plant Science, 355, 112468.

Liang R Z, Luo C, Liu Y, Hu W L, Guo Y H, Yu H X, Lu T T, Chen S Q, Zhang X J, He X H. 2023. Overexpression of two CONSTANS-like 2 (MiCOL2) genes from mango delays flowering and enhances tolerance to abiotic stress in transgenic Arabidopsis. Plant Science, 327, 111541.

Liu C Y, Zhang Q Q, Zhu H, Cai C M, Li S. 2021. Characterization of Mungbean CONSTANS-LIKE genes and functional analysis of CONSTANS-LIKE 2 in the regulation of flowering time in Arabidopsis. Frontiers in Plant Science, 12, 608603.

Liu L, Ding Q, Liu J, Yang C, Chen H, Zhang S, Zhu J, Wang D. 2020. Brassica napus COL transcription factor BnCOL2 negatively affects the tolerance of transgenic Arabidopsis to drought stress. Environmental and Experimental Botany, 178, 104171.

Liu X, Shang C, Duan P, Yang J, Wang J, Sui D, Chen G, Li X, Li G, Hu S, Hu X. 2025. The SlWRKY42-SlMYC2 module synergistically enhances tomato saline-alkali tolerance by activating the jasmonic acid signaling and spermidine biosynthesis pathway. Journal of Integrative Plant Biology, 67, 1254-1273.

Liu Y, Luo C, Guo Y H, Liang R Z, Yu H X, Chen S Q, Lu T T, Mo X, He X H. 2022b. Isolation and functional characterization of two CONSTANS-like 16 (MiCOL16) genes from mango. International Journal of Molecular Sciences, 23, 3075.

Liu Y, Luo C, Lan M Y, Guo Y H, Li R Y, Liang R Z, Chen S Q, Zhong J J, Li B J, Xie F F, Chen C B, He X H. 2024. MiCOL6, MiCOL7A and MiCOL7B isolated from mango regulate flowering and stress response in transgenic Arabidopsis. Physiologia Plantarum, 176, e14242.

Liu Y, Luo C, Liang R Z, Lan M Y, Yu H X, Guo Y H, Chen S Q, Lu T T, Mo X, He X H. 2022a. Genome-Wide identification of the mango CONSTANS (CO) family and functional analysis of two MiCOL9 genes in transgenic Arabidopsis. Frontiers in Plant Science, 13, 1028987.

Liu Y, Luo C, Zhang X J, Lu X X, Yu H X, Xie X J, Fan Z Y, Mo X, He X H2020. Overexpression of the mango MiCO gene delayed flowering time in transgenic Arabidopsis. Plant Cell Tiss Organ Cult143, 219-228.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 25, 402-408.

Lu J, Sun J J, Jiang A Q, Bai M J, Fan C G, Liu J Y, Ning G G, Wang C Q, Wang C Q. 2020. Alternate expression of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitates day-neutral response in Rosa chinensisJournal of Experimental Botany, 71, 4057-4068.

Lu T T, Wei R Y, Mo W J, Li K J, Yu H X, Wei H Y, He X H, Luo C. 2023. Overexpression of mango MiRZFP34 confers early flowering and stress tolerance in transgenic Arabidopsis. Scientia Horticulturae, 312, 111868.

Luo C, He X H, Chen H, Hu Y, Ou S J. 2013. Molecular cloning and expression analysis of four actin genes (MiACT) from mango. Biologia Plantarum, 57, 238-244. 

Lv X C, Zeng X L, Hu H M, Chen L X, Zhang F, Liu R, Liu Y, Zhou X L, Wang C S, Wu Z, Kim C H, He Y H, Du J M. 2021. Structural insights into the multivalent binding of the Arabidopsis FLOWERING LOCUS T promoter by the CO-NF-Y master transcription factor complex. The Plant Cell, 33, 1182-1195.

Ma H J, Pei J L, Zhuo J, Tang Q Y, Hou D, Lin X C. 2024. The CONSTANS-Like Gene PeCOL13 regulates flowering through intron-retained alternative splicing in Phyllostachys edulis. International Journal of Biological Macromolecules, 274, 133393.

Ma Z X, Jia Y, Min Y W, Fang X, Yan H D, Ma Q, Cai R H. 2025. Maize ZmWRKY71 gene positively regulates drought tolerance through reactive oxygen species homeostasis. Plant Physiology and Biochemistry, 219, 109399.

Mutasa G E, Hedden P. 2009. Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60, 1979-1989.

Nemoto Y, Nonoue Y, Yano M, Izawa T. 2016. Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant Journal, 86, 221-233.

Niu F, Rehmani M S, Yan J. 2024. Multilayered regulation and implication of flowering time in plants. Plant Physiology and Biochemistry, 213, 108842.

Okamuro J K, Szeto W, Lotys-Prass C, Jofuku K D. 1997. Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1. Plant Cell, 9, 37-47. 

Onouchi H, Igeño, M. I., Périlleux, C., Graves, K., & Coupland, G. 2000. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell, 12, 885-900.

Putterill J, Robson F, Lee K, Simon R, Coupland G. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 80, 847-857.

Robson F, Costa M M R, Hepworth S R, Vizir I, Piñeiro M, Reeves P H, Putterill J, Coupland G. 2001. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant journal. 28, 619-631. 

Ruan Y, Wang M, Xiao M, Liu B, Zhou J, Yang Y, Huang Y. 2024. Identification and function analysis of PP2C gene family shows that BnaA2.PP2C73 negatively regulates drought and salt stress responses in Brassica napus L. Industrial Crops and Products, 214, 118568.

Shim J S, Kubota A, Imaizumi T. 2017. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiology, 173, 5-15.

Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68, 2013-2037.

Tamaki S, Matsuo S, Wong H L, Yokoi S, Shimamoto K. 2007. Hd3a protein is a mobile flowering signal in rice. Science, 316, 1033-1036.

Tiwari S B, Shen Y, Chang H C, Hou Y L, Harris A, Ma S F, McPartland M, Hymus G J, Adam L, Marion C, Belachew A, Repetti P P, Reuber T L, Ratcliffe O J. 2010. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytologist, 187, 57-66.

Wang Q Q, Liu W, Leung C C, Tarté D A, Gendron J M. 2024. Plants distinguish different photoperiods to independently control seasonal flowering and growth. Science, 383, 9196.

Wen X X, Zhong Z Z, Xu P, Yang Q Q, Wang Y P, Liu L, Wu Z Z, Wu Y W, Zhang Y X, Liu Q N, Zhou Z P, Peng Z Q, He Y Q, Cheng S H, Cao L Y, Zhan X D, Wu W X. 2024. OsCOL5 suppresses heading through modulation of Ghd7 and Ehd2, enhancing rice yield. Theoretical and Applied Genetics, 137, 162.

Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D. 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 309, 1056-1059.

Wu G, Park M Y, Conway S R, Wang J W, Weigel D, Poethig R S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138, 750-759.

Wullschleger S D, Weston D J. 2012. Modeling the molecular and climatic controls on flowering. New Phytologist, 194, 599-601.

Xu C J, Shan J M, Liu T M, Wang Q, Ji Y J, Zhang Y T, Wang M Y, Xia N, Zhao L. 2023. CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean. Plant Physiology, 191, 2427-2446.

Yang W B, Zhou C C, Guo Y T, Niu S H, El-Kassaby Y A, Li W. 2024. Genome-Wide Identification of the Pinus tabuliformis CONSTANS-like gene family and their potential roles in reproductive cone development. International Journal of Biological Macromolecules, 254, 127621.

Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 12, 2473-2483.

Zhang Z P, Shi W J, Gu J W, Song S X, Xiao M, Yao J C, Liu Y C, Jiang J Z, Miao M M. 2024. Short day promotes gall swelling by a CONSTANS-FLOWERING LOCUS T pathway in Zizania latifoliaThe Plant Journal, 120, 1014-1031.

Zhao Y Z, Xu J H, Xu X Y, Liu H, Chang Q X, Xu L, Liang Z S. 2025. Genome-wide identification of CONSTANS-like (COL) gene family and the potential function of ApCOL08 under salt stress in Andrographis paniculata. International Journal of Molecular Sciences, 26, 724. 

[1] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[2] Yanqing Wu, Jiao Liu, Lu Zhao, Hao Wu, Yiming Zhu, Irshad Ahmad, Guisheng Zhou. Abiotic stress responses in crop plants: A multi-scale approach[J]. >Journal of Integrative Agriculture, 2026, 25(1): 1-15.
[3] Mohan K. Bista, Purushothaman Ramamoorthy, Ranadheer Reddy Vennam, Sadikshya Poudel, K. Raja Reddy, Raju Bheemanahalli. Impacts of abiotic stresses on cotton physiology and vigor under current and future CO2 levels[J]. >Journal of Integrative Agriculture, 2026, 25(1): 105-117.
[4] Xiaolin Liu, Jie Zhu, Ruixiang Li, Yang Feng, Qian Yao, Dong Duan. The role of the transcription factor NAC17 in enhancing plant resistance and stress tolerance in Vitis quinquangularis[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3435-3450.
[5] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[6] Ming Ma, Tingting Hao, Xipeng Ren, Chang Liu, Gela A, Agula Hasi, Gen Che. NAC family gene CmNAC34 positively regulates fruit ripening through interaction with CmNAC-NOR in Cucumis melo[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2601-2618.
[7] Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1017-1029.
[8] Yang Sun, Xuhuan Zhang, Zhenqin Chai, Yuying Li, Zheng Ren, Miaomiao Wang, Zhiqing Ma, Yong Wang, Juntao Feng. Involvement of FoVEL1 and FoLAE1 in conidiation, virulence and secondary metabolism of Fusarium oxysporum f. sp. niveum[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3941-3952.
[9] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[10] Caixiang Wang, Meili Li, Dingguo Zhang, Xueli Zhang, Juanjuan Liu, Junji Su. Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3370-3386.
[11] Wanting Yu, Yonglu Dai, Junmin Chen, Aimin Liang, Yiping Wu, Qingwei Suo, Zhong Chen, Xingying Yan, Chuannan Wang, Hanyan Lai, Fanlong Wang, Jingyi Zhang, Qinzhao Liu, Yi Wang, Yaohua Li, Lingfang Ran, Jie Xiang, Zhiwu Pei, Yuehua Xiao, Jianyan Zeng. Upregulation of the glycine-rich protein-encoding gene GhGRPL enhances plant tolerance to abiotic and biotic stressors by promoting secondary cell wall development[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3311-3327.
[12] Min Xu, Zhao Gao, Dalong Li, Chen Zhang, Yuqi Zhang, Qian He, Yingbin Qi, He Zhang, Jingbin Jiang, Xiangyang Xu, Tingting Zhao.

Functional prediction of tomato PLATZ family members and functional verification of SlPLATZ17 [J]. >Journal of Integrative Agriculture, 2024, 23(1): 141-154.

[13] Mariama KEBBEH, DONG Jing-xian, HUAN Chen, SHEN Shu-ling, LIU Yan, ZHENG Xiao-lin. Melatonin treatment alleviates chilling injury in mango fruit 'Keitt' by modulating proline metabolism under chilling stress[J]. >Journal of Integrative Agriculture, 2023, 22(3): 935-944.
[14] XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. >Journal of Integrative Agriculture, 2023, 22(2): 371-388.
[15] FENG Shi-qian, ZHANG Neng, CHEN Jun, ZHANG Dao-gang, ZHU Kai-hui, CAI Ni, TU Xiong-bing, ZHANG Ze-hua. Serine protease inhibitors LmSPN2 and LmSPN3 co-regulate embryonic diapause in Locusta migratoria manilensis (Meyen) via the Toll pathway[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3720-3730.
No Suggested Reading articles found!