Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (2): 371-388    DOI: 10.1016/j.jia.2022.08.091
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize

XU Xiao-hui1*, LI Wen-lan3*, YANG Shu-ke1, ZHU Xiang-zhen2, SUN Hong-wei1, LI Fan1, LU Xing-bo1, CUI Jin-jie2

1 Shandong Key Laboratory of Plant Virology/Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China

2 State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, P.R.China

3 Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

B-box(BBX)基因家族编码的蛋白是由包含锌指结构的转录因子组成,其N端有一个或两个高度保守的B-box基序。BBX蛋白在植物生长发育的各个方面起着至关重要的作用,包括幼苗的光形态发生、避荫、开花时间以及生物和非生物胁迫响应。目前,各国的研究者已经从几种植物中鉴定了BBX的家族成员,然而玉米中的BBX家族成员还知之甚少。通过对玉米BBX家族基因的全基因组鉴定、表达和互作的综合分析,可为了解其功能提供有用信息。本研究共鉴定出36个玉米BBX家族成员,进化分析显示其分布于三个主要分支。在每个主分支中ZmBBXs都具有相似的结构域、基序和基因组结构。基因重复分析表明,玉米BBX蛋白家族的扩张主要是通过片段重复来完成的。利用实时荧光定量PCR技术,本研究分析了ZmBBXs在不同器官组织和不同非生物胁迫条件下的表达。利用生物信息学工具,本研究建立了ZmBBXs蛋白的相互作用网络,并通过双分子荧光互补(BiFC)试验进行了验证。本研究的发现有助于理解ZmBBX家族的复杂性,并为揭示ZmBBX蛋白的生物学功能提供新的线索。



Abstract  

The B-box (BBX) family of proteins consists of zinc-finger transcription factors with one or two highly conserved B-box motifs at their N-termini.  BBX proteins play crucial roles in various aspects of plant growth and development, including seedling photomorphogenesis, shade avoidance, flowering time, and biotic and abiotic stress responses.  Previous studies have identified many different BBXs from several plant species, although the BBX family members in maize are largely unknown.  Genome-wide identification and comprehensive analysis of maize BBX (ZmBBX) expression and interaction networks would therefore provide valuable information for understanding their functions.  In this study, 36 maize BBXs in three major clades were identified.  The ZmBBXs within a given clade were found to share similar domains, motifs, and genomic structures.  Gene duplication analyses revealed that the expansion of BBX proteins in maize has mainly occurred by segmental duplication.  The expression levels of ZmBBXs were analyzed in various organs and tissues, and under different abiotic stress conditions.  Protein–protein interaction networks of ZmBBXs were established using bioinformatic tools and verified by bimolecular fluorescence complementation (BiFC) assays.  Our findings can facilitate a greater understanding of the complexity of the ZmBBX family and provide novel clues for unravelling ZmBBX protein functions

Keywords:  maize       B-box family protein              evolution              expression              protein interaction  
Received: 24 June 2021   Accepted: 23 November 2021
Fund: This work was financially supported by grants from the Natural Science Foundation of Shandong Province, China (ZR2018LC005 and ZR2019BC107) and the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences, China (CXGC2022C02). 
About author:  Correspondence LU Xing-bo, E-mail: luxb99@sina.com; CUI Jin-jie, E-mail: aycuijinjie@163.com * These authors have contributed equally to this work.

Cite this article: 

XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. 2023. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize. Journal of Integrative Agriculture, 22(2): 371-388.

Borden K L. 1998. RING fingers and B-boxes: zinc-binding protein–protein interaction domains. Biochemistry and Cell Biology, 76, 351–358.
Chang C S J, Li Y H, Chen L T, Hsieh W P, Shin J, Jane W N, Chou S J, Choi G, Hu J M, Somerville S, Wu S H. 2008. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. Plant Journal, 54, 205–219.
Cheng X F, Wang Z Y. 2005. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant Journal, 43, 758–768.
Crocco C D, Botto J F. 2013. BBX proteins in green plants: insights into their evolution, structure feather and function diversification. Gene, 15, 44–52.
Datta S, Hettiarachchi C, Johansson H, Holm M. 2007. SALT TOLERANCE HOMOLOG 2, a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development. Plant Cell, 19, 3242–3255.
Datta S, Hettiarachchi G H C M, Deng X W, Holm M. 2006. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell, 18, 70–84.
Datta S, Johansson H, Hettiarachchi C, Irigoyen M L, Desai M, Rubio V, Holm M. 2008. LZF1/SALT TOLERANCE HOMOLOG3, an Arabidopsis B-box protein involved in light dependent development and gene expression, undergoes COP1-mediated ubiquitination. Plant Cell, 20, 2324–2338.
Fan X Y, Sun Y, Cao D M, Bai M Y, Luo X M, Yang H J, Wei C Q, Zhu S W, Sun Y, Chong K, Wang Z Y. 2012. BZS1, a B-box protein, promotes photomorphogenesis downstream of both brassinosteroid and light signaling pathways. Molecular Plant, 5, 591–600.
Gangappa S N, Crocco C D, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto J F. 2013. The Arabidopsis B-box protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell, 25, 1243–1257.
Gu Z, Cavalcanti A, Chen F C, Bouman P, Li W H. 2002. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Molecular Biology and Evolution, 19, 256–262.
Hassidim M, Harir Y, Yakir E, Kron I, Green R M. 2009. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta, 230, 481–491.
Holm M, Hardtke C S, Gaudet R, Deng X W. 2001. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO Journal, 20, 118–127.
Huang J, Zhao X, Weng X, Wang L, Xie W. 2012. The rice B-box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis. PLoS ONE, 7, e48242.
Jang S, Marchal V, Panigrahi K C S, Wenkel S, Soppe W, Deng X W, Valverde F, Coupland G. 2008. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO Journal, 27, 1277–1288.
Kenrick P, Crane P R. 1997. The origin and early evolution of plants on land. Nature, 389, 33–39.
Khanna R, Kronmiller B, Maszle D R, Coupland G, Holm M, Mizuno T, Wu S H. 2009. The Arabidopsis B-box zinc finger family. Plant Cell, 21, 3416–3420.
Klug A, Schwabe J W. 1995. Protein motifs 5. Zinc fingers. FASEB Journal, 9, 597–604.
Lau K, Podolec R, Chappuis R, Ulm R, Hothorn M. 2019. Plant photoreceptors and their signaling components compete for binding to the ubiquitin ligase COP1 using their VP-peptide motifs. EMBO Journal, 38, e102140.
Laubinger S, Marchal V, Le Gourrierec J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U. 2006. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development, 133, 3213–3222.
Li W, Wang J, Sun Q, Li W, Yu Y, Zhao M, Meng Z. 2017. Expression analysis of genes encoding double B-box zinc finger proteins in maize. Functional & Integrative Genomics, 17, 653–666.
Liu J, Shen J, Xu Y, Li X, Xiao J, Xiong L. 2016. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. Journal of Experimental Botany, 67, 5785–5798.
Liu H, Dong S, Sun D, Liu W, Gu F, Liu Y, Guo T, Wang J F, Chen Z Q. 2016. CONSTANS-Like 9 (OsCOL9) interacts with receptor for activated C-Kinase 1 (OsRACK1) to regulate blast resistance through salicylic acid and ethylene signaling pathways. PLoS ONE, 11, e166249.
Liu X, Li R, Dai Y, Chen X, Wang X. 2018. Genome-wide identification and expression analysis of the B-box gene family in the apple (Malus domestica Borkh.) genome. Molecular Genetics and Genomics, 293, 303–315.
Liu X, Li R, Dai Y, Yuan L, Sun Q, Zhang S, Wang X Y. 2019. A B-box zinc finger protein, MdBBX10, enhanced salt and drought stresses tolerance in Arabidopsis. Plant Molecular Biology, 99, 437–447.
Min J H, Chung J S, Lee K H, Kim C S. 2015. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. Journal of Integrative Plant Biology, 57, 313–324.
Nagaoka S, Takano T. 2003. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. Journal of Experimental Botany, 54, 2231–2237.
Narusaka M, Kawai K, Izawa N, Seki M, Shinozaki K, Seo S, Kobayashi M, Shiraishi T, Narusaka Y. 2008. Gene coding for SigA-binding protein from Arabidopsis appears to be transcriptionally up-regulated by salicylic acid and NPR1-dependent mechanisms. Journal of General Plant Pathology, 74, 345–354. 
Park H Y, Lee S Y, Seok H Y, Kim S H, Sung Z R, Moon Y H. 2011. EMF1 interacts with EIP1, EIP6 or EIP9 involved in the regulation of flowering time in Arabidopsis. Plant and Cell Physiology, 52, 1376–1388.
Peers G, Niyogi K K. 2008. Pond scum genomics: the genomes of Chlamydomonas and Ostreococcus. Plant Cell, 20, 502–507.
Putterill J, Robson F, Lee K, Simon R, Coupland G. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 80, 847–857.
Qi Q, Gibson A, Fu X, Zheng M Y, Kuehn R, Wang Y, Navarro S, Morrell J A, Jiang D M, Simmons G, Bell E, Ivleva N B, McClerren A L, Loida P, Ruff T G, Petracek M, Preuss S. 2012. Involvement of the N-terminal B-box domain of Arabidopsis BBX32 protein in interaction with soybean BBX62 protein. Journal of Biological Chemistry, 287, 31482–31493.
Qin W, Yu Y, Jin Y, Wang X, Liu J, Xi J, Li Z, Li H, Zhao G, Hu W, Chen C, Li F, Yang Z. 2018. Genome-wide analysis elucidateds the role of CONSTANS-like genes in stress responses of cotton. International Journal of Molecular Sciences, 19, 2658.
Robson F, Costa M M, Hepworth S R, Vizir I, Piñeiro M, Reeves P H, Putterill J, Coupland G. 2001. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant Journal, 28, 619–631.
Steinbach Y. 2019. The Arabidopsis thaliana CONSTANS-LIKE 4 (COL4) - A modulator of flowering time. Frontiers in Plant Science, 10, 651.
Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410, 1116–1120.
Sun Y, Fan X Y, Cao D M, Tang W, He K, Zhu J Y, He J X, Bai M Y, Zhu S W, Oh E, Patil S, Kim T W, Ji H K, Wong W H, Rhee S Y, Wang Z Y. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765–777.
Tiwari S B, Shen Y, Chang H C, Hou Y, Harris A, Ma S F, McPartland M, Hymus G J, Adam L, Marion C, Belachew A, Repetti P P, Reuber T L, Ratcliffe O J. 2010. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytologist, 187, 57–66.
Torok M, Etkin D L. 2000. Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation, 67, 63–71.
Tripathi P, Carvallo M, Hamilton E E, Preuss S, Kay S A. 2017. Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering. Proceedings of the National Academy of Sciences of the United States of America, 114, 172–177.
Walley J W, Sartor R C, Shen Z, Schmitz R J, Wu K J, Urich M A, Nery J R, Smith L G, Schnable J C, Ecker J R, Briggs S P. 2016. Integration of omic networks in a developmental atlas of maize. Science, 353, 814–818.
Wang C Q, Guthrie C, Sarmast M K, Dehesh K. 2014. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T 
transcription, defining a flowering time checkpoint in Arabidopsis. Plant Cell, 26, 3589–3602.
Wang C Q, Sarmast M K, Jiang J, Dehesh K. 2015. The transcriptional regulator BBX19 promotes hypocotyl growth by facilitating COP1-mediated EARLY FLOWERING3 degradation in Arabidbopsis. Plant Cell, 27, 1128–1139.
Wang Q, Tu X, Zhang J, Chen X, Rao L. 2013. Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis. Molecular Biology Reports, 40, 2679–2688.
Wang Q, Zeng J, Deng K, Tu X, Zhao X, Tang D, Liu X. 2011. DBB1a, involved in gibberellin homeostasis, functions as a negative regulator of blue light-mediated hypocotyl elongation in Arabidopsis. Planta, 233, 13–23.
Xu D, Jiang Y, Li J, Lin F, Holm M, Deng X W. 2016. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proceedings of the National Academy of Sciences of the United States of America, 113, 7655–7660.
Xu X H, Chen H, Sang Y L, Wang F, Ma J P, Gao, X Q, Zhang X S. 2012. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas. BMC Genomics, 13, 294.
Yamawaki S, Yamashino T, Nakamichi N, Nakanishi H, Mizuno T. 2011. Light-responsive double B-box containing transcription factors are conserved in Physcomitrella pattens. Bioscience Biotechnology and Biochemistry, 75, 2037–2041.
Yang S, Zhang X, Yue J X, Tian D, Chen J Q. 2008. Recent duplications dominate NBS-encoding gene expansion in two woody species. Molecular Genetics and Genomics, 280, 187–198.
Zhang Z, Ji R, Li H, Zhao T, Liu J, Lin C, Liu B. 2014. CONSTANS-LIKE 7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis. Molecular Plant, 7, 1429–1440.
Zobell O, Coupland G, Reiss B. 2005. The family of CONSTANS-like genes in Physcomitrella patens. Plant Biology, 7, 266–275.

[1] Xiaoxu Shen, Yongtong Tian, Wentao He, Can He, Shunshun Han, Yao Han, Lu Xia, Bo Tan, Menggen Ma, Houyang Kang, Jie Yu, Qing Zhu, Huadong Yin. Gga-miRNA-181-5p family facilitates chicken myogenesis via targeting TGFBR1 to block TGF-β signaling[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2764-2777.
[2] Wajjiha Batool, Justice Norvienyeku, Wei Yi, Zonghua Wang, Shihong Zhang, Lili Lin. Disruption of non-classically secreted protein (MoMtp) compromised conidiation, stress homeostasis, and pathogenesis of Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2686-2702.
[3] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[4] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[5] Jie Deng, Zi’e Wang, Wenyun Li, Xiaohua Chen, Diqiu Liu. WRKY11 up-regulated dirigent expression to enhance lignin/lignans accumulation in Lilium regale Wilson during response to Fusarium wilt[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2703-2722.
[6] Li Cui, Jianguo Wang, Zhaohui Tang, Zheng Zhang, Sha Yang, Feng Guo, Xinguo Li, Jingjing Meng, Jialei Zhang, Yakov Kuzyakov, Shubo Wan. General and specialized metabolites in peanut roots regulate arbuscular mycorrhizal symbiosis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2618-2632.
[7] Yao Zhang, Zelong She, Ruolan He, Shuangyan Yao, Xiang Li, Xiaoguang Liu, Xinming Yin, Jizhen Wei, Mengfang Du, Shiheng An. The Ca2+/CaN/ACC and cAMP/PKA/HK signal pathways are required for PBAN-mediated sex pheromone biosynthesis in Conogethes punctiferalis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2735-2751.
[8] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[9] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[10] Xiaotong Liu, Siwei Liang, Yijia Tian, Xiao Wang, Wenju Liang, Xiaoke Zhang. Effect of land use on soil nematode community composition and co-occurrence network relationship[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2807-2819.
[11] Ming Ju, Guiting Li, Qiuzhen Tian, Hengchun Cao, Qin Ma, Yinghui Duan, Hui Guo, Zhanyou Zhang, Yingying Huang, Huili Wang, Haiyang Zhang, Hongmei Miao. Deletion of a 1,049 bp sequence from the 5´ UTR upstream of the SiHEC3 gene induces a seed non-shattering mutation in sesame  [J]. >Journal of Integrative Agriculture, 2024, 23(8): 2589-2604.
[12] Jia Chen, Xinran Zhang, Ziqi He, Dongwei Xiong, Miao Long. Damage on intestinal barrier function and microbial detoxification of deoxynivalenol: A review[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2507-2524.
[13] Yuhan Zhao, Chen Qian, Yumei Zhang, Xiande Li, Kamiljon T. Akramov. Food security amid the COVID-19 pandemic in Central Asia: Evidence from rural Tajikistan[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2853-2867.
[14] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[15] Xin Zhang, Jingjing Wang, Fuli Tan, Haixiu Gao, Shenggen Fan. The potential impact of increased whole grain consumption among Chinese adults on reducing healthcare costs and carbon footprint[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2842-2852.
No Suggested Reading articles found!