Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2601-2618    DOI: 10.1016/j.jia.2024.11.041
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
NAC family gene CmNAC34 positively regulates fruit ripening through interaction with CmNAC-NOR in Cucumis melo

Ming Ma1*, Tingting Hao1*, Xipeng Ren2, Chang Liu1, Gela A1, Agula Hasi1#, Gen Che1#

1 Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education/School of Life Sciences, Inner Mongolia University, Hohhot 010070, China

2 Institute for Future Farming Systems Organization, Central Queensland University, Rockhampton, QLD 4701, Australia

 Highlights 

The physicochemical properties, molecular features, and expression profiles of the NAC transcription factor family members in melon were elucidated.
Genetic transformation showed that CmNAC34 and CmNAC-NOR positively regulate fruit ripening in melon.
We identified a gene regulatory network involving CmNAC34, CmNAC-NOR, CmMYB1R1, and CmGLYs that controls fruit ripening.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
甜瓜(Cucumis melo)是世界范围内重要的经济园艺作物。NAC(NAM、ATAC和CUC)转录因子在植物生长和果实发育的各个阶段发挥着重要的转录调控作用,但在甜瓜中对其基因功能知之甚少。本研究通过全基因组鉴定和生物信息学分析,在甜瓜基因组中共鉴定出78个含有完整且保守的NAM(no apical meristem)结构域的CmNAC家族基因。转录组数据分析和qRT-PCR结果显示,大多数CmNAC基因在甜瓜的营养器官或生殖器官中特异表达。我们通过遗传转化发现在甜瓜中过表达CmNAC34导致果实早熟,表明该基因对促进果实成熟具有正调控作用。通过酵母双杂交和双分子荧光互补实验,验证了CmNAC34与CmNAC-NOR有直接蛋白互作。CmNAC34和CmNAC-NOR在甜瓜组织中的表达模式相似,亚细胞定位也表明它们均为核蛋白。我们在甜瓜中遗传转化CmNAC-NOR,发现其过表达同样导致果实早熟。酵母单杂交实验和双荧光素酶实验揭示CmNAC34蛋白可以结合两个GLY基因(Glyoxalase)的启动子。这两个GLY基因参与脱落酸信号通路调控果实发育。以上结果揭示了NAC家族转录因子的分子特征、表达谱、功能模式,为CmNAC34调控呼吸跃变期果实成熟的分子机制提供了新的思路。


Abstract  

Melon (Cucumis melo) is an economically important horticultural crop cultivated worldwide.  NAC (NAM/ATAC/CUC) transcription factors play crucial roles in the transcriptional regulation of various developmental stages in plant growth and fruit development, but their gene functions in melon remain largely unknown.  Here, we identified 78 CmNAC family genes with an integrated and conserved no apical meristem (NAM) domain in the melon genome by performing genome-wide identification and bioinformatics analysis.  Transcriptome data analysis and qRT-PCR results showed that most CmNACs are specifically enriched in either the vegetative or reproductive organs of melon.  Through genetic transformation, we found that overexpression of CmNAC34 in melons led to early ripening fruits, suggesting its positive role in promoting fruit maturation.  Using yeast two-hybrid and bimolecular fluorescence complementation assays, we verified the direct protein interaction between CmNAC34 and CmNAC-NOR.  The expression patterns of CmNAC34 and CmNAC-NOR were similar in melon tissues, and subcellular localization revealed their nuclear protein characteristics.  We transformed CmNAC-NOR in melon and found that its overexpression resulted in early ripening fruits.  Then, the yeast one-hybrid and dual luciferase reporter gene assays showed that the CmNAC34 protein can bind to the promoters of two glyoxalase (GLY) genes, which are involved in the abscisic acid signal pathway and associated with fruit regulation.  These findings revealed the molecular characteristics, expression profiles, and functional patterns of the NAC family genes and provide new insights into the molecular mechanism by which CmNAC34 regulates climacteric fruit ripening.

Keywords:  melon       NAC transcription factors        expression profile        fruit ripening        protein interaction  
Received: 11 April 2024   Online: 30 November 2024   Accepted: 18 October 2024
Fund: This research was funded by the National Natural Science Foundation of China (32202513), the Applied Technology Research and Development Foundation of Inner Mongolia Autonomous Region, China (2021PT0001), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (2021BS03002), the Inner Mongolia Autonomous Region Universities “Young Science and Technology Talent Support Project”, China (NJYT24067), the Inner Mongolia University High-Level Talent Research Program, China (10000-21311201/056), and the Inner Mongolia Autonomous Region Department of Education First-class Scientific Research Project, China (YLXKZX-ND-030).
About author:  #Correspondence Gen Che, Tel: +86-471-4992209, E-mail: chegen@imu.edu.cn; Agula Hasi, E-mail: hasiagula@imu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Ming Ma, Tingting Hao, Xipeng Ren, Chang Liu, Gela A, Agula Hasi, Gen Che. 2025. NAC family gene CmNAC34 positively regulates fruit ripening through interaction with CmNAC-NOR in Cucumis melo. Journal of Integrative Agriculture, 24(7): 2601-2618.

Bai S, Tian Y, Tan C, Bai S, Hao J, Hasi A. 2020. Genome-wide identification of microRNAs involved in the regulation of fruit ripening and climacteric stages in melon (Cucumis melo). Horticulture Research7, 106.

Catala R, Lopez-Cobollo R, Mar Castellano M, Angosto T, Alonso J M, Ecker J R, Salinas J. 2014. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell26, 3326–3342.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen J, Yin Y. 2017. WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. Plant Signaling & Behavior12, e1365212.

Chen J H, Jiang H W, Hsieh E J, Chen H Y, Chien C T, Hsieh H L, Lin T P. 2012. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiology158, 340–351.

Cui Y, Li S, Dong Y, Wu H, Gao Y, Feng Z, Zhao X, Shan L, Zhang Z, Liu Z, Song L, Liu X, Ren H. 2023. Genetic regulation and molecular mechanism of immature cucumber peel color: A review. Vegetable Research3, 1–6.

Diao P, Chen C, Zhang Y, Meng Q, Lv W, Ma N. 2020. The role of NAC transcription factor in plant cold response. Plant Signaling & Behavior15, 1785668.

Du X, Su M, Jiao Y, Xu S, Song J, Wang H, Li Q. 2022. A transcription factor SlNAC10 gene of Suaeda liaotungensis regulates proline synthesis and enhances salt and drought tolerance. International Journal of Molecular Sciences23, 9625.

Duan M, Zhang R, Zhu F, Zhang Z, Gou L, Wen J, Dong J, Wang T. 2017. A lipid-anchored NAC transcription factor is translocated into the nucleus and activates glyoxalase I expression during drought stress. Plant Cell29, 1748–1772.

Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. 2021. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Research49, W216–W227.

El-Gebali S, Mistry J, Bateman A, Eddy S R, Luciani A, Potter S C, Qureshi M, Richardson L J, Salazar G A, Smart A, Sonnhammer E L L, Hirsh L, Paladin L, Piovesan D, Tosatto S C E, Finn R D. 2019. The Pfam protein families database in 2019. Nucleic Acids Research47, D427–D432.

Fenn M A, Giovannoni J J. 2021. Phytohormones in fruit development and maturation. Plant Journal105, 446–458.

Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L S, Yamaguchi-Shinozaki K, Shinozaki K. 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant Journal39, 863–876.

Gao Y, Fan Z Q, Zhang Q, Li H L, Liu G S, Jing Y, Zhang Y P, Zhu B Z, Zhu H L, Chen J Y, Grierson D, Luo Y B, Zhao X D, Fu D Q. 2021. A tomato NAC transcription factor, SlNAM1, positively regulates ethylene biosynthesis and the onset of tomato fruit ripening. Plant Journal108, 1317–1331.

Gao Y, Wei W, Zhao X, Tan X, Fan Z, Zhang Y, Jing Y, Meng L, Zhu B, Zhu H, Chen J, Jiang C Z, Grierson D, Luo Y, Fu D Q. 2018. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Horticulture Research5, 75.

Gao Y, Xu Z, Zhang L, Li S, Wang S, Yang H, Liu X, Zeng D, Liu Q, Qian Q, Zhang B, Zhou Y. 2020. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nature Communications11, 5219.

Gapper N E, Mcquinn R P, Giovannoni J J. 2013. Molecular and genetic regulation of fruit ripening. Plant Molecular Biology82, 575–591.

Garapati P, Feil R, Lunn J E, Van Dijck P, Balazadeh S, Mueller-Roeber B. 2015. Transcription factor Arabidopsis activating factor1 integrates carbon starvation responses with trehalose metabolism. Plant Physiology169, 379–390.

Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González V M, Hénaff E, Câmara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez S, Blanca J, Cañizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, et al. 2012. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences of the United States of America109, 11872–11877.

Guo W, Zhang J, Zhang N, Xin M, Peng H, Hu Z, Ni Z, Du J. 2015. The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic ArabidopsisPLoS ONE10, e0135667.

Hajdukiewicz P, Svab Z, Maliga P. 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology25, 989–994.

Hong Y, Zhang H, Huang L, Li D, Song F. 2016. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science7, 4.

Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics31, 1296–1297.

Huang C, Zhao J, Huang Q, Peng L, Huang Z, Li W, Sun S, He Y, Wang Z. 2024. OsNAC3 regulates seed germination involving abscisic acid pathway and cell elongation in rice. New Phytologist241, 650–664.

Jiang H W, Liu M J, Chen I C, Huang C H, Chao L Y, Hsieh H L. 2010. A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiology154, 1646–1658.

Jin J F, Wang Z Q, He Q Y, Wang J Y, Li P F, Xu J M, Zheng S J, Fan W, Yang J L. 2020. Genome-wide identification and expression analysis of the NAC transcription factor family in tomato (Solanum lycopersicum) during aluminum stress. BMC Genomics21, 288.

Kai W, Wang J, Liang B, Fu Y, Zheng Y, Zhang W, Li Q, Leng P. 2019. PYL9 is involved in the regulation of ABA signaling during tomato fruit ripening. Journal of Experimental Botany70, 6305–6319.

Kesh H, Kaushik P. 2021. Advances in melon (Cucumis melo L.) breeding: An update. Scientia Horticulturae282, 110045.

Khan N, Hu C M, Amjad Khan W, Hou X. 2018. Genome-wide identification, classification, and expression divergence of glutathione-transferase family in Brassica rapa under multiple hormone treatments. BioMed Research International2018, 6023457.

Klee H J, Giovannoni J J. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics45, 41–59.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33, 1870–1874.

Larrainzar E, Molenaar J A, Wienkoop S, Gil-Quintana E, Alibert B, Limami A M, Arrese-Igor C, Gonzalez E M. 2014. Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules. Plant Cell & Environment37, 2051–2063.

Le D T, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S. 2011. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Research18, 263–276.

Lee D K, Chung P J, Jeong J S, Jang G, Bang S W, Jung H, Kim Y S, Ha S H, Choi Y D, Kim J K. 2017. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal15, 754–764.

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van De Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research30, 325–327.

Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research49, W293–W296.

Li T, Xu Y, Zhang L, Ji Y, Tan D, Yuan H, Wang A. 2017. The Jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell29, 1316–1334.

Li X, Martín-Pizarro C, Zhou L, Hou B, Wang Y, Shen Y, Li B, Posé D, Qin G. 2023. Deciphering the regulatory network of the NAC transcription factor FvRIF, a key regulator of strawberry (Fragaria vesca) fruit ripening. Plant Cell35, 4020–4045.

Li Z, Wei X, Tong X, Zhao J, Liu X, Wang H, Tang L, Shu Y, Li G, Wang Y, Ying J, Jiao G, Hu H, Hu P, Zhang J. 2022. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. Molecular Plant15, 706–722.

Liu X, Wang T, Bartholomew E, Black K, Dong M, Zhang Y, Yang S, Cai Y, Xue S, Weng Y, Ren H. 2018. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.). Horticulture Research5, 31.

Lu S, Wang J, Chitsaz F, Derbyshire M K, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Marchler G H, Song J S, Thanki N, Yamashita R A, Yang M, Zhang D, Zheng C, Lanczycki C J, Marchler-Bauer A. 2020. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research48, D265–D268.

Ma M, Liu S, Wang Z, Shao R, Ye J, Yan W, Lv H, Hasi A, Che G. 2022. Genome-wide identification of the SUN gene family in melon (Cucumis melo) and functional characterization of two CmSUN genes in regulating fruit shape variation. International Journal of Molecular Sciences23, 16047.

Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q. 2014. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biology14, 351.

Martín-Pizarro C, Vallarino J G, Osorio S, Meco V, Urrutia M, Pillet J, Casañal A, Merchante C, Amaya I, Willmitzer L, Fernie A R, Giovannoni J J, Botella M A, Valpuesta V, Posé D. 2021. The NAC transcription factor FaRIF controls fruit ripening in strawberry. Plant Cell33, 1574–1593.

Meng C, Yang D, Ma X, Zhao W, Liang X, Ma N, Meng Q. 2016. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. Journal of Plant Physiology193, 88–96.

Olsen A N, Ernst H A, Leggio L L, Skriver K. 2005. NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science10, 79–87.

Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thalianaDNA Research10, 239–247.

Patil M, Ramu S V, Jathish P, Sreevathsa R, Udayakumar M. 2014. Overexpression of AtNAC2 (ANAC092) in groundnut (Arachis hypogaea L.) improves abiotic stress tolerance. Plant Biotechnology Reports8, 161–169.

Peng H, Phung J, Zhai Y, Neff M M. 2020. Self-transcriptional repression of the Arabidopsis NAC transcription factor ATAF2 and its genetic interaction with phytochrome A in modulating seedling photomorphogenesis. Planta252, 48.

Qin G, Wang Y, Cao B, Wang W, Tian S. 2012. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant Journal70, 243–255.

Rios P, Argyris J, Vegas J, Leida C, Kenigswald M, Tzuri G, Troadec C, Bendahmane A, Katzir N, Pico B, Monforte A J, Garcia-Mas J. 2017. ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. Plant Journal91, 671–683.

Rolim P M, Fidelis G P, Padilha C E A, Santos E S, Rocha H A O, Macedo G R. 2018. Phenolic profile and antioxidant activity from peels and seeds of melon (Cucumis melo L. var. reticulatus) and their antiproliferative effect in cancer cells. Brazilian Journal of Medical and Biological Research51, e6069.

Shan W, Kuang J F, Lu W J, Chen J Y. 2014. Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1. Plant Cell & Environment37, 2116–2127.

Souer E, Van Houwelingen A, Kloos D, Mol J, Koes R. 1996. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell85, 159–170.

Srivastava M K, Dwivedi U N. 2000. Delayed ripening of banana fruit by salicylic acid. Plant Science158, 87–96.

Sun Q, Jiang S, Zhang T, Xu H, Fang H, Zhang J, Su M, Wang Y, Zhang Z, Wang N, Chen X. 2019. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science289, 110286.

Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell16, 2481–2498.

Trishla V S, Kirti P B. 2021. Structure-function relationship of Gossypium hirsutum NAC transcription factor, GhNAC4 with regard to ABA and abiotic stress responses. Plant Science302, 110718.

Wang J, Tian S, Yu Y, Ren Y, Guo S, Zhang J, Li M, Zhang H, Gong G, Wang M, Xu Y. 2022. Natural variation in the NAC transcription factor NONRIPENING contributes to melon fruit ripening. Journal of Integrative Plant Biology64, 1448–1461.

Wang J, Zheng C, Shao X, Hu Z, Li J, Wang P, Wang A, Yu J, Shi K. 2020. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato. Horticulture Research7, 209.

Wang L, Fu H, Zhao J, Wang J, Dong S, Yuan X, Li X, Chen M. 2023. Genome-wide identification and expression profiling of glutathione S-transferase gene family in foxtail millet (Setaria italica L.). Plants (Basel), 12, 1138.

Wang P, Lu S, Zhang X, Hyden B, Qin L, Liu L, Bai Y, Han Y, Wen Z, Xu J, Cao H, Chen H. 2021. Double NCED isozymes control ABA biosynthesis for ripening and senescent regulation in peach fruits. Plant Science304, 110739.

Wang Y, Cui Y, Liu B, Wang Y, Sun S, Wang J, Tan M, Yan H, Zhang Y. 2022. Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco. Frontiers in Plant Science13, 993841.

Wang Y, Tang H, Debarry J D, Tan X, Li J, Wang X, Lee T H, Jin H, Marler B, Guo H, Kissinger J C, Paterson A H. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research40, e49.

Wei S, Gao L, Zhang Y, Zhang F, Yang X, Huang D. 2016. Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress. Plant Cell Reports35, 1827–1839.

Xu S, Zhang Z, Zhou J, Han X, Song K, Gu H, Zhu S, Sun L. 2022. Comprehensive analysis of NAC genes reveals differential expression patterns in response to pst DC3000 and their overlapping expression pattern during PTI and ETI in tomato. Genes (Basel), 13, 2015.

Yue P, Lu Q, Liu Z, Lv T, Li X, Bu H, Liu W, Xu Y, Yuan H, Wang A. 2020. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. New Phytologist226, 1781–1795.

Zhang X M, Yu H J, Sun C, Deng J, Zhang X, Liu P, Li Y Y, Li Q, Jiang W J. 2017. Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativusPlant Physiology and Biochemistry113, 98–109.

Zheng Y, Wu S, Bai Y, Sun H, Jiao C, Guo S, Zhao K, Blanca J, Zhang Z, Huang S, Xu Y, Weng Y, Mazourek M, Reddy U K, Ando K, Mccreight J D, Schaffer A A, Burger J, Tadmor Y, Katzir N, et al. 2019. Cucurbit Genomics Database (CuGenDB): A central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research47, D1128–D1136.

Zhu F, Luo T, Liu C, Wang Y, Zheng L, Xiao X, Zhang M, Yang H, Yang W, Xu R, Zeng Y, Ye J, Xu J, Xu J, Larkin R M, Wang P, Wen W, Deng X, Fernie A R, Cheng Y. 2020. A NAC transcription factor and its interaction protein hinder abscisic acid biosynthesis by synergistically repressing NCED5 in Citrus reticulataJournal of Experimental Botany71, 3613–3625.

Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z. 2014. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant and Cell Physiology55, 119–135.

[1] Jian Ma, Guoliang Yuan, Xinyang Xu, Haijun Zhang, Yanhong Qiu, Congcong Li, Huijun Zhang. Identification and molecular marker development for peel color gene in melon (Cucumis melo L.)[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2589-2600.
[2] Martín Flores-Saavedra, Pietro Gramazio, Santiago Vilanova, Diana M. Mircea, Mario X. Ruiz-González, Óscar Vicente, Jaime Prohens, Mariola Plazas. Introgressed eggplant lines with the wild Solanum incanum evaluated under drought stress conditions[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2203-2216.
[3] Jin Wang, Minghua Wei, Haiyan Wang, Changjuan Mo, Yingchun Zhu, Qiusheng Kong. A time-course transcriptome reveals the response of watermelon to low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1786-1799.
[4] Xiaoli Zhang, Daolin Ye, Xueling Wen, Xinling Liu, Lijin Lin, Xiulan Lü, Jin Wang, Qunxian Deng, Hui Xia, Dong Liang. Genome-wide analysis of RAD23 gene family and a functional characterization of AcRAD23D1 in drought resistance in Actinidia[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1831-1843.
[5] Dongming Liu, Jinfang Liang, Quanquan Liu, Yaxin Chen, Shixiang Duan, Dongling Sun, Huayu Zhu, Junling Dou, Huanhuan Niu, Sen Yang, Shouru Sun, Jianbin Hu, Luming Yang. The pseudo-type response regulator gene Clsc regulates rind stripe coloration in watermelon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 147-160.
[6] Shuang Pei, Zexu Wu, Ziqiao Ji, Zheng Liu, Zicheng Zhu, Feishi Luan, Shi Liu. Quantitative trait loci identification reveals zinc finger protein CONSTANS-LIKE 4 as the key candidate gene of stigma color in watermelon (Citrullus lanatus)[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2292-2305.
[7] Yan Li, Xingkui An, Shuang Shan, Xiaoqian Pang, Xiaohe Liu, Yang Sun, Adel Khashaveh, Yongjun Zhang. Functional characterization of sensory neuron membrane protein 1a involved in sex pheromone detection of Apolygus lucorum (Hemiptera: Miridae)[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4120-4135.
[8] Hu Wang, Lihong Cao, Yalu Guo, Zheng Li, Huanhuan Niu. Enhancer of Shoot Regeneration 2 (ESR2) regulates pollen maturation and vitality in watermelon (Citrullus lanatus)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3506-3521.
[9] Xiaoxue Liang, Jiyu Wang, Lei Cao, Xuanyu Du, Junhao Qiang, Wenlong Li, Panqiao Wang, Juan Hou, Xiang Li, Wenwen Mao, Huayu Zhu, Luming Yang, Qiong Li, Jianbin Hu. An allelic variation in the promoter of the LRR-RLK gene, qSS6.1, is associated with melon seed size[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3522-3536.
[10] XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. >Journal of Integrative Agriculture, 2023, 22(2): 371-388.
[11] CHEN Ke-xin, DAI Dong-yang, WANG Ling, YANG Li-min, LI Dan-dan, WANG Chao, JI Peng, SHENG Yun-yan. SLAF marker based QTL mapping of fruit-related traits reveals a major-effect candidate locus ff2.1 for flesh firmness in melon[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3331-3345.
[12] ZHU Ying-chun, YUAN Gao-peng, JIA Sheng-feng, AN Guo-lin, LI Wei-hua, SUN De-xi, LIU Jun-pu. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development[J]. >Journal of Integrative Agriculture, 2022, 21(2): 407-421.
[13] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[14] CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3199-3208.
[15] ZHU Ying-chun, SUN De-xi, DENG Yun, AN Guo-lin, LI Wei-hua, SI Wen-jing, LIU Jun-pu, SUN Xiao-wu.
Comparative transcriptome analysis of the effect of different heat shock periods on the unfertilized ovule in watermelon (Citrullus lanatus)
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 528-540.
No Suggested Reading articles found!