Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Impacts of abiotic stresses on cotton physiology and vigor under current and future CO2 levels

Mohan K. Bista1, Purushothaman Ramamoorthy2, Ranadheer Reddy Vennam1, Sadikshya Poudel1, K. Raja Reddy1, Raju Bheemanahalli1#

1 Department of Plant and Soil Sciences, Mississippi State University, MS 39762, USA

2 Geosystems Research Institute, Mississippi State University, Mississippi State, MS 39762, USA

 Highlights 

· Cotton cultivars are sensitive to abiotic stress during the vegetative stage.

· Stresses and CO2 levels significantly influence the expression of physiology and phenotypic traits.

· Elevated CO2 partially mitigated stress-induced damage to biomass under heat, salt, and drought.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

Elevated CO2 (eCO2) may mitigate stress-induced damage to cotton (Gossypium spp.) growth and development.  However, understanding the early-stage responses of cotton to multiple abiotic stressors at eCO2 levels has been limited.  This study quantified the impacts of chilling (CS, 22/14°C, day/night temperature), heat (HS, 38/30°C), drought (DS, 50% irrigation of the control), and salt (SS, 8 dS m-1) stresses on pigments, physiology, growth, and development of fourteen upland cotton cultivars under ambient CO2 (aCO2, 420 ppm; current) and eCO2 (700 ppm; future) levels during the vegetative stage.  The eCO2 partially negated the effects of all stresses by improving one or more of the pigments, physiological, growth, and development traits, except CS.  For instance, HS at aCO2 significantly increased stomatal conductance by 36% compared with non-stressed plants at aCO2.  However, HS at eCO2 significantly decreased stomatal conductance by 18% compared with HS at aCO2.  The first squaring was delayed by one day under SS at aCO2 but two days earlier under SS at eCO2 than non-stressed plants at aCO2.  Root and shoot dry mass and the total leaf area were significantly higher under all stresses, except for CS, at the eCO2 compared with similar stresses at the aCO2.  Most growth and development traits, including plant height, leaf area, and shoot dry mass, displayed a mirroring response pattern between aCO2 and eCO2 under all environments except CS.  Cultivars exhibited significant interaction with stressed environments.  Further, results revealed differential sensitivity and adaptation potential of cultivars to stress environments at varying CO2 levels.  This study highlights the need to consider eCO2 in designing breeding programs to develop stress-tolerant varieties for future cotton-growing environments. 

Keywords:  abiotic stress       eCO2              cotton              vegetative vigor              multi-stress tolerance  
Received: 26 December 2024   Online: 04 April 2025  
Fund: 

This study was supported by the Mississippi Agricultural and Forestry Experiment Station, Special Research Initiative (MAFES-SRI), USDA-Agricultural Research Service (USDA-ARS) (58-6064-3-007), and the National Institute of Food and Agriculture (MIS-430030). 

About author:  #Correspondence Raju Bheemanahalli, E-mail: rajubr@pss.msstate.edu

Cite this article: 

Mohan K. Bista, Purushothaman Ramamoorthy, Ranadheer Reddy Vennam, Sadikshya Poudel, K. Raja Reddy, Raju Bheemanahalli. 2025. Impacts of abiotic stresses on cotton physiology and vigor under current and future CO2 levels. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.012

Ahammed G J, Guang Y, Yang Y, Chen J. 2021. Mechanisms of elevated CO2-induced thermotolerance in plants: The role of phytohormones. Plant Cell Reports, 40, 2273–2286

Ainsworth E A, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell, & Environment, 30, 258–270.

Arena C, Vitale L. 2018. Chilling-induced reduction of photosynthesis is mitigated by exposure to elevated CO2 concentrations. Photosynthetica, 56, 1259–1267.

Ashraf M. 2002. Salt tolerance of cotton: Some new advances. Critical Reviews in Plant Science, 21, 1–30.

Bange M P, Baker J T, Bauer P J, Broughton K J, Constable G A, Luo Q, Derrick M, Oosterhuis D M, Osanai Y, Payton P, Tissue D T, Reddy K R. 2016. Climate Change and Cotton Production in Modern Farming Systems, No. 6. Commonwealth Agricultural Bureaux International.

Barickman T C, Adhikari B, Sehgal A, Walne C H, Reddy K R, Gao W. 2021a. Drought and elevated carbon dioxide impact the morphophysiological profile of basil (Ocimum basilicum L.). Crops, 1, 118–128.

Barickman T C, Adhikari B, Sehgal A, Walne C H, Reddy K R, Gao W. 2021b Drought and elevated CO2 impacts photosynthesis and biochemicals of basil (Ocimum basilicum L.). Stresses, 1, 223–237.

Bechere E, Auld D L, Smith C W, Cantrell R G, Hequet E F, Ritchie G L, Pabuayon I L B, Mishra D, Hendon B R, Brown N, Kelly B R. 2020. Registration of six upland cotton germplasm lines with improved fiber quality through ethyl methane sulfonate treatments and selection. Journal of Plant Registrations, 14, 159–164.

Bista M K, Adhikari B, Sankarapillai L V, Pieralisi B, Reddy K R, Jenkins J, Bheemanahalli R. 2024. Drought and heat stress induce differential physiological and agronomic trait responses in cotton. Industrial Crops and Products222, 119540.

Boese S R, Wolfe D W, Melkonian J J. 1997. Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling. Plant Cell & Environment, 20, 625–632.

Bourland F M, Jones D C. 2018. Registration of ‘UA114’cotton cultivar. Journal of Plant Registrations, 12, 181–185.

Broughton K J, Smith R A, Duursma R A, Tan D K, Payton P, Bange M P, Tissue D T. 2016. Warming alters the positive impact of elevated CO2 concentration on cotton growth and physiology during soil water deficit. Functional Plant Biology, 44, 267-278.

Cassia R, Nocioni M, Correa-Aragunde N, Lamattina L. 2018. Climate change and the impact of greenhouse gases: CO2 and NO, friends and foes of plant oxidative stress. Frontiers in Plant Science9, 273.

Chaudhry S, Sidhu G P S. 2022. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports41, 1–31

Chavan S G, Duursma R A, Tausz M, Ghannoum O. 2019. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. Journal of Experimental Botany, 70, 6447–6459.

Fang D D, Jenkins J N, Deng D D, McCarty J C, Li P, Wu J. 2014. Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics, 15, 1–15.

Fernandez G C J. 1992. Stress tolerance index-a new indicator of tolerance. HortScience, 27, 626d–626.

Geissler N, Hussin S, Koyro H W. 2010. Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta, 231, 583–594.

Gupta S, Sankarapillai L V, Reddy K R, Stetina S R, Bheemanahalli R. 2023 Resilience of cotton cultivars to chilling stress during germination. Plant Physiology Reports, 28, 521–531.

Huang B, Xu Y. 2015. Cellular and molecular mechanisms for elevated CO2-regulation of plant growth and stress adaptation. Crop Science, 55, 1405–1424.

IPCC (Intergovernmental Panel of Climate Change). 2023. AR5 synthesis report. [2024-10-20]. https://www.ipcc.ch/report/ar5/syr/

Islam M S, Thyssen G N, Jenkins J N, Zeng L, Delhom C D, McCarty J C, Deng D D, Hinchliffe D J, Jones D C, Fang D D. 2016. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics, 17, 1–17.

Keeling. 2024. The Keeling curve. [2024-11-24]. https://keelingcurve.ucsd.edu/

Kloth R H, Turley R B. 2010. Physiology of Seed and Fiber Development. In: Physiology of Cotton. Springer Netherlands, Dordrecht. pp. 111–122.

Kodadinne Narayana N, Wijewardana C, Alsajri F A, Reddy K R, Stetina S R, Bheemanahalli, R. 2024. Resilience of soybean genotypes to drought stress during the early vegetative stage. Scientific Reports, 14, 17365.

Kramer P J. 1980. The role of physiology in crop improvement. In: Linking Research to Crop Production. Springer, Boston, MA, US. pp. 51–62.

Leakey A D B, Ainsworth E A, Bernacchi C J, Rogers A, Long S P, Ort D R. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany, 60, 2859–2876.

Li A, Lv D, Zhang Y, Zhang D, Zong Y, Shi X, Li P, Hao X. 2024. Elevated CO2 concentration enhances drought resistance of soybean by regulating cell structure, cuticular wax synthesis, photosynthesis, and oxidative stress response. Plant Physiology and Biochemistry, 206, 108266.

Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, et al. 2015. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 33, 524–530.

Liu S, Zuo D, Cheng H, He M, Wang Q, Lv L, Zhang Y, Ashraf J, Liu J, Sog G. 2023. Cotton pedigree genome reveals restriction of cultivar-driven strategy in cotton breeding. Genome Biology, 24, 282.   

Lv D, Xing Q, Wang T, Song J, Duan R, Hao X, Zong Y, Zhang D, Shi X, Zhao Z. 2024. Elevated CO2 concentration enhances plant growth, photosynthesis, and ion homeostasis of soybean under salt-alkaline stress. Environmental and Experimental Botany, 228, 106000.

Ma Y, Wei Z, Liu J, Liu X, Liu F. 2021. Growth and physiological responses of cotton plants to salt stress. Journal of Agronomy and Crop Science, 207, 565–576.

Maryum Z, Luqman T, Nadeem S, Khan S M U D, Wang B, Ditta A, Khan M K R 2022. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Frontiers in Plant Science, 13, 907937.

Munawar W, Hameed A, Khan M K R. 2021. Differential morphophysiological and biochemical responses of cotton genotypes under various salinity stress levels during early growth stage. Frontiers in Plant Science, 12, 622309.

Nawaz M S, Sami S A, Bano M, Khan M R Q, Anwar Z, Ijaz A, Ahmed T. 2023. Impact of salt stress on cotton. International Journal of Agriculture and Biosciences, 12, 98–103.

Noreen S, Ahmad S, Fatima Z, Zakir I, Iqbal P, Nahar K, Hasanuzzaman M. 2020. Abiotic stresses mediated changes in morphophysiology of cotton plant. In: Cotton Production and Uses (Agronomy, Crop Protection, and Postharvest Technologies). Springer Netherlands, Dordrecht. pp.341–366.

Olivoto T, Lúcio A D C. 2020. Metan: An R package for multi-environment trial analysis. Methods in Ecology Evolution, 11, 783–789.

Olivoto T, Lúcio A D C, da Silva J A G, Sari B G, Diel M I. 2019. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agronomy Journal, 111, 2961–2969.

Perez L M, Mauleon R, Arick M A, Magbanua Z V, Peterson D G, Dean J F D, Tseng T M. 2022. Transcriptome analysis of the 2,4-dichlorophenoxyacetic acid (2,4-D)-tolerant cotton chromosome substitution line CS-B15sh and its susceptible parental lines G. hirsutum L. cv. Texas Marker-1 and G. barbadense L. cv. Pima 379. Frontiers in Plant Science, 13, 910369.

Reddy A R, Reddy K R, Padjung R, Hodges H F. 1996. Nitrogen nutrition and photosynthesis in leaves of Pima cotton. Journal of Plant Nutrition, 19, 755–770.

Reddy K R, Hodges H F, Read J J, McKinion J M, Baker J T, Tarpley L, Reddy V R. 2001. Soil-Plant-Atmosphere-Research (SPAR) facility: A tool for plant research and modeling. Biotronics, 30, 27-50.

Saini D K, Impa S M, McCallister D, Patil G B, Abidi N, Ritchie G, Jaconis S Y, Jagadish K S V. 2023. High day and night temperatures impact on cotton yield and quality—current status and future research direction. Journal of Cotton Research, 6, 16.

Dos Santos T B, Ribas A F, de Souza S G H, Budzinski I G F, Domingues D S. 2022. Physiological responses to drought, salinity, and heat stress in plants: A review. Stresses, 2, 113–135.

Shreevani G N, Sreenivas A G, Beladhadi R V. 2022. Effect of elevated CO2 and temperature on phytochemistry of Bt cotton: Climate change perspective.  The Pharma Innovation Journal, 11, 2196-2204   

Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S. 2017. Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: A perspective on root sugar sensing and hormonal crosstalk. Frontiers in Physiology, 8, 578.

Vennam R R, Bheemanahalli R, Reddy K R, Dhillon J, Zhang X, Adeli A. 2024. Early-season maize responses to salt stress: Morpho-physiological, leaf reflectance, and mineral composition. Journal of Agriculture and Food Research, 15, 100994.

Virk G, Snider J L, Pilon C. 2020. Associations between first true leaf physiology and seedling vigor in cotton under different field conditions. Crop Science, 60, 404–418.

Wang Z, Wang C, Liu S. 2022. Elevated CO2 alleviates adverse effects of drought on plant water relations and photosynthesis: A global meta-analysis. Journal of Ecology, 110, 2836–2849.

Yoon S T, Hoogenboom G, Flitcroft I, Bannayan M. 2009. Growth and development of cotton (Gossypium hirsutum L.) in response to CO2 enrichment under two different temperature regimes. Environmental and Experimental Botany, 67, 178–187.

Yousaf M I, Hussain Q, Alwahibi M S, Aslam M Z, Khalid M Z, Hussain S, Zafar A, Shah S A S, Abbasi A M, Mehboob A. 2023. Impact of heat stress on agro-morphological, physio-chemical and fiber related parameters in upland cotton (Gossypium hirsutum L.) genotypes. Journal of King Saud University-Science, 35, 102379.

Zafar M M, Shakeel A, Haroon M, Manan A, Sahar A, Shoukat A, Mo H, Farooq M A, Renm M. 2022. Effects of salinity stress on some growth, physiological, and biochemical parameters in cotton (Gossypium hirsutum L.) germplasm. Journal of Natural Fibers, 19, 8854–8886.

Zhang H, Sonnewald U. 2017. Differences and commonalities of plant responses to single and combined stresses. The Plant Journal, 90, 839–855.

Zhang S, Fu W, Zhang Z, Fan Y, Liu T. 2017. Effects of elevated CO2 concentration and temperature on some physiological characteristics of cotton (Gossypium hirsutum L.) leaves. Environmental and Experimental Botany, 133, 108–117.

Zhou Y H, Yu J Q, Mao W H, Huang L F, Song X S, Nogués S. 2006. Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. Plant and Cell Physiology, 47, 192–199. 

No related articles found!
No Suggested Reading articles found!