Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Low light stress at tasseling threatens high-density maize production by impairing silk emergence

Yarong Zhang, Jianhong Ren#, Shanshan Liu, Xinru Zhang, Guangzhou Liu, Xiong Du#, Yanhong Cui, Zhen Gao#

State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding 071001, China

 Highlights 

Shading during the maize tasseling stage caused significant yield loss, particularly under high planting densities.

Silk emergence was the primary determinant of kernel number under shading stress at tasseling.

Shading inhibited silk growth by impairing sugar metabolism and disrupting hormonal balance in the silks.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

开花期弱光胁迫已成为密植玉米生产的限制因素。探究遮光与密度对玉米产量的协同效应对于提升玉米产能至关重要。为此本研究开展为期 3 年的大田试验,以种植密度为主区,设置 3 水平4.56.759.0 /m²D1D2D3),以光照条件为副区,设2个水平(遮阴S从抽雄期开始连续 6 天遮阴(透光率 25%正常光照CK,研究籽粒产量、光合速率、茎秆碳水化合物含量、花丝生长动态及蔗糖代谢与激素变化。结果表明遮光导致的产量损失随密度增加而加剧。三年数据显示,与自然光照相比,遮阴使得D1D2D3密度下玉米平均减产57.9%59.0%84.2%。穗粒数减少是产量下降的主要原。本研究显示造成果穗秃尖的原因是授粉失败而非受精后籽粒败育,即授粉失败导致穗粒数降低。遮阴未影响花粉活力,但显著减少了伸出苞叶的花丝数量,且在高密度下降幅更显著。穗粒数与伸出苞叶花丝数呈显著正线性相关(R²=0.94随机森林分析进一步显示,伸出苞叶的花丝数是影响玉米穗粒数的最关键因素。上述结果共同表明,抽雄期遮阴条件下,玉米花丝生长停滞决定了穗粒数。进一步分析发现,遮阴导致玉米碳亏缺,降低了花丝蔗糖含量,同时破坏了影响细胞分裂伸长的激素平衡,最终限制了花丝生长。本研究揭示了遮阴与种植密度协同导致玉米减产关键机制,即花丝生长停滞决定最终穗粒数。高密度、持续雨或其他胁迫导致的弱光条件下,调控花丝生长是保障玉米生产的关键



Abstract  

Low light stress during the flowering stage has become a limiting factor in high-density maize production. Understanding the combined effects of shading and planting density on maize yield is essential for improving productivity.  A three-year field experiment was conducted using six consecutive days of shading (25% light transmittance) initiated at tasseling, under three planting densities (4.5, 6.75, and 9.0 plants m-2; D1, D2, and D3).  Grain yield, photosynthetic rate, stem carbohydrate availability, silk growth dynamics, and sucrose metabolism and hormonal changes in silks were measured. Results indicated that shading-induced yield penalties were more severe at higher planting densitiy. Compared with ambient light conditions, shading reduced maize yield by 57.9, 59.0, and 84.2% at D1, D2, and D3, respectively, across the three years.  The reduction in kernel number per ear was the primary cause of yield decline.  The occurrence of barren ear tips indicated ovary fertilization failure rather than post-fertilization grain abortion.  Pollen viability remained unaffected by shading, whereas the number of silks emerging from the husk declined significantly, especially at higher densities.  A strong positive linear correlation was observed between kernel number per ear and emerged silk count (R2=0.94).  Furthermore, random forest analysis identified the number of emerged silks as the most influential factor affecting kernel set.  These findings together indicated that silk growth arrest determined final kernel number under shading at tasseling.  Further analysis revealed that shading induced carbon deficiency in maize, reducing sucrose content in silks.  This disruption impaired hormone-mediated cell expansion and consequently limited silk growth.  The mechanism of yield loss under the synergistic interaction of shading and planting density was thus elucidated, with silk growth arrest governing final kernel number.  Paying attention to accelerating silk growth is critical for maize production under low light conditions caused by high planting density, continuous rainfall, or similar stresses.

Keywords:  maize yield       silks       planting density       hormones       sucrose  
Online: 08 December 2025  
Fund: 

This work was supported by the National Science Fund of China (32101829), the Natural Science Research Project of Higher Education in Hebei Province, China (BJK2022009), the Hebei Agriculture Research System, China (HBCT2023020203), the State Key Laboratory of North China Crop Improvement and Regulation (NCCIR2024ZZ–9), and the S&T Program of Hebei, China (23567601H).

About author:  Yarong Zhang, E-mail: zyr15075310531@163.com; #Correspondence Zhen Gao, E-mail: gaozhenvision@163.com; Jianhong Ren, E-mail: ndrenjianhong@163.com; Xiong Du, E-mail: duxiong2002@163.com

Cite this article: 

Yarong Zhang, Jianhong Ren, Shanshan Liu, Xinru Zhang, Guangzhou Liu, Xiong Du, Yanhong Cui, Zhen Gao. 2025. Low light stress at tasseling threatens high-density maize production by impairing silk emergence. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.010

Borrás L, Slafer G A, Otegui M E. 2004. Seed dry weight response to source-sink manipulations in wheat, maize and soybean: A quantitative reappraisal. Field Crops Research86, 131–146.

Cárcova J, Otegui M E. 2001. Ear temperature and pollination timing effects on maize kernel set. Crop Science, 41, 1809–1815. 

Cerrudo A, Di Matteo J, Fernandez E, Robles M, Pico L O, Andrade F H. 2013. Yield components of maize as affected by short shading periods and thinning. Crop & Pasture Science, 64, 580–587.

Chen X M, Li F Y, Dong S, Liu X F, Li B B, Xiao Z D, Deng T, Wang Y B, Shen S, Zhou S L. 2022. Stubby or slender? Ear architecture is related to drought resistance in maize. Frontiers in Plant Science, 13, 901186.

Chen X X, Wang L C, Niu Z G, Zhang M, Li C A, Li J R. 2020. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agricultural and Forest Meteorology, 282283, 107867.

Cui H, James J, Jin L, Zhang J. 2015. Effects of shading on spike differentiation and grain yield formation of summer maize in the field. International Journal of Biometeorology, 59, 1189–1200.

Deng J M, Zuo W Y, Wang Z Q, Fan Z X, Ji M F, Wang G X, Ran J Z, Zhao C M, Liu J Q, Niklas K J, Hammond S T, Brown J H. 2012. Insights into plant size-density relationships from models and agricultural crops. Proceedings of the National Academy of Sciences of the United States of America, 109, 8600–8605.

Du H, Wu N, Chang Y, Li X, Xiao J, Xiong L. 2013. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Molecular Biology, 83, 475–488.

Edmeades G O, BolaOs J, Hernàndez M, Bello S. 1993. Causes for silk delay in a lowland tropical maize population. Crop Science, 33, 1029–1035.

Fuad-Hassan A, Tardieu F, Turc O. 2008. Drought-induced changes in anthesis-silking interval are related to silk expansion: A spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell and Environment, 31, 1349–1360.

Gao J, Liu Z, Zhao B, Dong S, Liu P, Zhang J. 2020. Shade stress decreased maize grain yield, dry matter, and nitrogen accumulation. Agronomy Journal, 112, 2768–2776.

Gao J, Zhao B, Dong S, Liu P, Ren B, Zhang J. 2017. Response of summer maize photosynthate accumulation and distribution to shading stress assessed by using 13CO2 stable isotope tracer in the field. Frontiers in Plant Science, 8, 1821.

Gao Z, Sun L, Ren J H, Liang X, Shen S, Lin S, Zhao X, Chen X, Wu G, Zhou S. 2020. Detasseling increases kernel number in maize under shade stress. Agricultural and Forest Meteorology, 280, 107811.

Han W, Zhang Y, Ren J, Zhang X, Tang Z, Wu Z, Shi L, Liu G, Bian D, Cui Y, Du X, Gao Z. 2025. Nitrogen fertilizer accelerated silk growth and increased grain yield of maize under low light stress. Field Crops Research, 333, 110093.

Hanft J M, Jones R J. 1986. Kernel abortion in maize: I. carbohydrate concentration patterns and acid invertase activity of maize kernels induced to abort in vitro. Plant Physiology, 81, 503–510.

Hiyane R, Hiyane S, Tang A C, Boyer J S. 2010. Sucrose feeding reverses shade-induced kernel losses in maize. Annals of Botany, 106, 395–403.

Hu J, Yu W, Liu P, Zhao B, Zhang J, Ren B. 2023. Responses of canopy functionality, crop growth and grain yield of summer maize to shading, waterlogging, and their combination stress at different crop stages. European Journal of Agronomy, 144, 126761.

Hu Q, Ma X, He H, Pan F, He Q, Huang B, Pan X. 2019. Warming and dimming: Interactive impacts on potential summer maize yield in north china plain. Sustainability, 11, 1–15.

Javed H H, Hu Y, Raza A, Alabdallah N M, Asghar M AKhan K S, Peng X, Ghafoor A, Ullah A, Wu Y C. 2024. Low light at specific growth stage affects photoassimilates transportation, seed quality and yield in Brassica napus L. Journal of Agronomy and Crop Science, 210, e12735.

Larrosa F H, Borrás L. 2021. Differential maize yield hybrid response to stand density are correlated to their response to radiation reductions around flowering. Frontiers in Plant Science, 12, 771739.

Liang X G, Chen H M, Pan Y Q, Wang Z W, Huang C, Chen Z Y, Tang W, Chen X M, Shen S, Zhou S L. 2025. Yield more in the shadow: Mitigating shading-induced yield penalty of maize via optimizing source-sink carbon partitioning. European Journal of Agronomy, 162, 127421.

Liu F, Zhou F, Wang X L, Zhan X X, Guo Z X, Liu Q L, Wei G, Lan T Q, Feng D J, Kong F L, Yuan J C. 2023. Optimizing nitrogen management enhances stalk lodging resistance and grain yield in dense planting maize by improving canopy light distribution. European Journal of Agronomy, 148, 126871.

Ma H, Qin Y T, Wang Y F, Zhao X F, Zhang F F, Tang J H, Fu Z Y. 2015. Proteomic analysis of silk viability in maize inbred lines and their corresponding hybrids. PLoS ONE, 10, e0144050

Mansfield B, Mumm R H. 2014. Survey of plant density tolerance in us maize germplasm. Crop Science, 54, 157–173.

Meng Q, Liu B, Yang H, Chen X. 2020. Solar dimming decreased maize yield potential on the North China Plain. Food and Energy Security, 9, e235.

Mohkum H H, Farhat A, Ashfaq A, Shah F, Qasim L K, Hesham A, Wajid F. 2016. The effect of nutrients shortage on plant’s efficiency to capture solar radiations under semi-arid environments. Environmental Science and Pollution Research, 23, 20497–20505.

Oury V, Caldeira C F, Prodhomme D, Pichon J P, Gibon Y, Tardieu F, Turc O. 2016a. Is change in ovary carbon status a cause or a consequence of maize ovary abortion in water deficit during flowering? Plant Physiology, 171, 997–1008.

Oury V, Tardieu F, Turc O. 2016b. Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in maize. Plant Physiology, 171, 986–996.

Postma J A, Hecht V L, Hikosaka K, Nord E A, Pons T L, Poorter H. 2021. Dividing the pie: A quantitative review on plant density responses. Plant, Cell & Environment, 44, 1072–1094.

Procko C, Burko Y, Jaillai Y, Ljun K, Long J A, Chory J. 2016. The epidermis coordinates auxin-induced stem growth in response to shade. Genes & Development, 30, 1529–1541.

Rossini M A, Curin F, Otegui M E. 2023. Ear reproductive development components associated with kernel set in maize: Breeding effects under contrasting environments. Field Crops Research, 304, 109150.

Ruan Y L. 2014. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 65, 33–67.

Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S. 2010. Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat. Molecular Plant, 3, 942–955.

Setter T L, Flannigan B A, Melkonian J. 2001. Loss of kernel set due to water deficit and shade in maize. Crop Science, 41, 1530–1540. 

Singletary R. 1989. Roles of carbohydrate supply and phytohormones in maize kernel abortion. Plant Physiology, 91, 986–992.

Tang Q, Ren J H, Du X, Niu S, Liu S, Wei D, Zhang Y, Bian D, Cui Y, Gao Z. 2022. Reduced stem nonstructural carbohydrates caused by plant growth retardant had adverse effects on maize yield under low density. Frontiers in Plant Science, 13, 1035254

Tao Y, Ferrer J L, Ljung K, Pojer F, Hong F, Long J, Li L, Moreno J E, Bowman M E, Ivans L J, Cheng Y, Lim J, Z hao Y, Ballare C L, Sandberg G, Noel J P, Chory J. 2008. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell, 133, 164–176.

Tilman D, Balzer C, Hill J, Befort B L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264.

Wang J, Shi K, Lu W, Lu D. 2021. Effects of post-silking shading stress on enzymatic activities and phytohormone contents during grain development in spring maize. Journal of Plant Growth Regulation, 40, 1060–1073.

Wang Y, Lv X, Sheng D, Hou X, Mandal S, Liu X, Zhang P, Shen S, Wang P, Krishna J, Huang S. 2023. Heat-dependent postpollination limitations on maize pollen tube growth and kernel sterility. Plant, Cell & Environment, 12, 3822–3838.

Wang Y Y, Tao H B, Tian B J, Sheng D C, Xu C C, Zhou H M, Huang S B, Wang P. 2019. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 158, 80–88.

Yang J, Zhang J, Wang Z, Zhu Q. 2003. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regulation, 41, 185–195.

Yang Y, Xu W, Hou P, Liu G, Liu W, Wang Y, Hao Z R, Ming B, Xie R, Wang K, Li S. 2019. Improving maize grain yield by matching maize growth and solar radiation. Scientific Reports, 9, 3635.

Zhang M, Xing L, Ren X, Zou J, Song F, Wang L, Xu M. 2022. Evidence of arrested silk growth in maize at high planting density using phenotypic and transcriptional analyses. Journal of Integrative Agriculture, 21, 3148–3157.

Zhao D, Mackown C T, Stark P J, Kindiger B K. 2010. Rapid analysis of nonstructural carbohydrate components in grass forage using microplate enzymatic assays. Crop Science, 50, 1537–1545.

Zhou J, Tian L, Wang S, Li H, Zhao Y, Zhang M, Wang X, An P, Li C. 2021. Ovary abortion induced by combined waterlogging and shading stress at the flowering stage involves amino acids and flavonoid metabolism in maize. Frontiers in Plant Science, 12, 788717.

Zinselmeier C, Jeong B R, Boyer J S. 1999. Starch and the control of kernel number in maize at low water potentials. Plant Physiology, 121, 25–36. 

[1] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[2] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[3] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[4] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[5] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[6] Zimeng Liang, Xidan Cao, Rong Gao, Nian Guo, Yangyang Tang, Vinay Nangia, Yang Liu. Brassinosteroids alleviate wheat floret degeneration under low nitrogen stress by promoting the redistribution of sucrose from stems to spikes[J]. >Journal of Integrative Agriculture, 2025, 24(2): 497-516.
[7] Xinglong Wang, Fan Liu, Nan Zhao, Xia Du, Pijiang Yin, Tongliang Li, Tianqiong Lan, Dongju Feng, Fanlei Kong, Jichao Yuan. Optimizing sowing dates increase solar radiation to mitigate maize lodging and yield variability: A five-year field study[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4573-4587.
[8] Yuting Zhu, Yongli Wang, Yidong Wang, Guiping Zhao, Jie Wen, Huanxian Cui. Transcriptome analysis reveals steroid hormones biosynthesis pathway involved in abdominal fat deposition in broilers[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3118-3128.
[9] Li Miao, Xiangyu Wang, Chao Yu, Chengyang Ye, Yanyan Yan, Huasen Wang.

What factors control plant height? [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1803-1824.

[10] Qilong Song, Jie Zhang, Fangfang Zhang, Yufang Shen, Shanchao Yue, Shiqing Li.

Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau, China [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1671-1684.

[11] Minghui Cao, Yan Duan, Minghao Li, Caiguo Tang, Wenjie Kan, Jiangye Li, Huilan Zhang, Wenling Zhong, Lifang Wu.

Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil [J]. >Journal of Integrative Agriculture, 2024, 23(2): 698-710.

[12] Muhammad Mobeen Tahir, Li Fan, Zhimin Liu, Humayun Raza, Usman Aziz, Asad Shehzaib, Shaohuan Li, Yinnan He, Yicen Lu, Xiaoying Ren, Dong Zhang, Jiangping Mao. Physiological and molecular mechanisms of cytokinin involvement in nitrate-mediated adventitious root formation in apples[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4046-4057.
[13] Yanmei Gao, Maoya Jing, Meng Zhang, Zhen Zhang, Yuqing Liu, Zhimin Wang, Yinghua Zhang. Transcriptomic and metabolomic analysis of changes in grain weight potential induced by water stress in wheat[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3706-3722.
[14] YUE Kai, LI Ling-ling, XIE Jun-hong, Zechariah EFFAH, Sumera ANWAR, WANG Lin-lin, MENG Hao-feng, LI Lin-zhi. Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2673-2686.
[15] ZHANG Li-hua, ZHU Ling-cheng, XU Yu, LÜ Long, LI Xing-guo, LI Wen-hui, LIU Wan-da, MA Feng-wang, LI Ming-jun, HAN De-guo. Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2080-2093.
No Suggested Reading articles found!